Cho a,b,c > 0
a+b+c=1
CM: \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
\(\Leftrightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge8abc\)
\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Điều này luôn đúng vì:
Áp dụng BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\sqrt[3]{abc}\le\frac{1}{3}\Leftrightarrow\frac{1}{\sqrt[3]{abc}}\ge3\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge3.3=9\)-----> ĐPCM
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy, ta có : \(a+b\ge2\sqrt{ab}\) ; \(b+c\ge2\sqrt{bc}\); \(c+a\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8\)(đpcm)
Đề của bạn chưa đúng nhé :)
Dễ thấy: \(a^2;b^2;c^2\ge0\forall a;b;c\) mà \(a;b;c\ne0\) nên chỉ có \(a,b,c>0\)
Áp dụng BĐT AM-GM ta có:
\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2\cdot\frac{1}{a^2}}=2\sqrt{1}=2\)
\(b^2+\frac{1}{b^2}\ge2\sqrt{b^2\cdot\frac{1}{b^2}}=2\sqrt{1}=2\)
\(c^2+\frac{1}{c^2}\ge2\sqrt{c^2\cdot\frac{1}{c^2}}=2\sqrt{1}=2\)
Nhân theo vế 3 BĐT trên ta có:
\(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\ge2\cdot2\cdot2=8\)
Đẳng thức xảy ra khi \(a=b=c\)
\(VT=\text{Σ}\left(\frac{1}{a}-1\right)=\frac{b+c}{a}.\frac{c+a}{b}.\frac{a+b}{c}\)
\(\ge\frac{8\sqrt{a^2b^2c^2}}{abc}=8\)(cô - si)
Dấu "=" xảy ra khi a = b = c =\(\frac{1}{3}\))
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
1 ) \(â+b\ge2\sqrt{ab}\)
Tương tự : \(b+c\ge2\sqrt{bc}\)
\(c+a\ge2\sqrt{ca}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi a = b = c
2) Nhân 2 vế bpt vs abc
Cm như 1)
3) \(a+2\ge2\sqrt{2a}\)
\(b+8\ge2\sqrt{8b}\)
\(a+b\ge2\sqrt{ab}\)
Nhân vế theo vế của 3 bpt dc dpcm
Dấu = xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=8\\a=b\end{matrix}\right.\) (vô lí)
nên k xảy ra đẳng thức
Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...
BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:
Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)
Nhân hai vế của BĐT với 27, ta cần chứng minh:
\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)
\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)
Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.
Từ \(a+b+c=1\) thế vào biểu thức sau
\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)=\left(\frac{a+b+c}{a}-\frac{a}{a}\right)\left(\frac{a+b+c}{b}-\frac{b}{b}\right)\left(\frac{a+b+c}{c}-\frac{c}{c}\right)\)
\(=\frac{b+c}{a}.\frac{a+c}{b}.\frac{a+b}{c}=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)(1)
Với a,b,c>0 , Áp dụng bất đẳng thức AM-GM (cauchy) cho hai số không âm ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};a+c\ge2\sqrt{ac}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\)(2)
Từ (1) và (2) suy ra \(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge\frac{8abc}{abc}=8\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
mình wên nữa: đừng ti ck cho câu trả lời này nhé