K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2021

mấy bạn ới mình cần gấp nhé cảm ơn

3 tháng 8 2016

A=5+52+...+599+5100

=(5+52)+...+(599+5100)

=5.(1+5)+...+599.(1+5)

=5.6+...+599.6

=6.(5+...+599) chia hết cho 6 (dpcm)

Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi

Chúc bạn học giỏi nha!!

1 tháng 1 2021

\(A=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)

\(B=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+...+2^{96}.31\)

\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)

20 tháng 10 2021

\(A=1+3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(A=1+3+\left(3^2+3^3+3^4+...+3^{99}+3^{100}\right)\)

\(A=1+3\)

\(A=4\)

→ \(4\) ⋮ 4

⇒ \(A\)\(4\)

2 tháng 7 2015

a)B=1+3+32+33+....+399

=(1+3)+(32+33)+...+(398+399)

=4+32.4+....+398.4

=4.(1+32+...+398) chia hết cho 4

Vậy B chia hết cho 4

b)B=1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40

Vậy B chia hết cho 40

2 tháng 7 2015

a)B=(1+3)+(32+33)+...+(398+399)

=(1+3)+32(1+3)+....+398(1+3)

=4+32.4+...+398.4

=4(1+32+...+398) chia hết cho4

câu b bạn vận dụng theo câu a là đc bạn nhóm 4 lại nhé mình hơi lười làm

9 tháng 9 2023

\(B=3+3^2+3^3+...+3^{99}\\ B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{98}+3^{99}\right)\\ B=3\left(1+3\right)+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\\ B=3.4+3^2.4+...+3^{98}.4\\ B=4\left(3+3^2+3^{98}\right)⋮4\)

Vậy:\(B⋮4\left(đpcm\right)\)

9 tháng 9 2023

Bạn xem lại đề bài

23 tháng 9 2015

S = 3100 - 1

24 tháng 8

Ad cho xin ý kiến vs ạ

30 tháng 11 2022

a: \(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

=3(2+2^3+...+2^99) chia hết cho 3

b: Sửa đề: \(B=3+3^2+3^3+...+3^{1990}+3^{1991}+3^{1992}\)

\(=3\left(1+3+3^2\right)+...+3^{1990}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{1990}\right)⋮13\)

 

12 tháng 5 2016

Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)

                \(=\left(3+3^2+3^3+3^4+3^5\right)\)

18 tháng 8 2023

C/M C\(⋮\)4

\(C=1+3+3^2+...+3^{99}⋮4\)

\(C=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)⋮4\)

\(C=\left(1+3\right)+3^2.\left(1+3\right)+...+3^{98}.\left(1+3\right)⋮4\)

\(C=4+3^2.4+...+3^{98}.4⋮4\)

\(C=4.\left(1+3^2+...+3^{98}\right)⋮4\)

C/M C\(⋮\)40

\(C=1+3+3^2+...+3^{99}⋮40\)

\(C=\left(1+3+3^2+3^3\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)⋮40\)

\(C=\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)⋮40\)

\(C=40.1+...+3^{96}.40⋮40\)

\(C=40.\left(1+...+3^{96}\right)⋮40\)