Giúp mk vs
Chứng minh:x^2+xy+y^2> =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x2=yz,y2=xz,z2=xy
=>x2+y2+z2=yz+xz+xy
=>2x2+2y2+2z2=2xy+2yz+2xz
=>2x2+2y2+2z2-2xy-2yz-2xz=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2xz)=0
=>(x2-2xy+x2)+(y2-2yz+y2)+(z2-2xz+z2)=0
=>(x-y)2+(y-z)2+(z-x)2=0
Ta thấy : (x-y)2>0 với mọi x,y
(y-z)2>0 với mọi y,z
(z-x)2>0 với mọi x,z
=>(x-y)2+(y-z)2+(z-x)2>0 với mọi x,y,z
Mà (x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x-y=y-z=z-x=0
=>x=y=z
BPT tương đương
x^2 + y^2 + z^2 - xy - yz - xz >= 0
=> 2 ( x^2 + y^2 + z^2 - xy - yz - xz ) >=0
=> 2 x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz >= 0
=> ( x - y)^2 + (y- z)^2 + ( z- x)^2 >=0 luôn đúng
=> ĐPCM
Ta có: \(P=\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2xy}{x-y}\)
\(=x-y+\frac{16}{x-y}\ge2.4=8\)
Đặt \(t=x^2+y^2\) thì ta có :
\(P^2=\frac{\left(x^2+y^2\right)^2}{\left(x-y\right)^2}=\frac{t^2}{t-16}=\frac{1}{\frac{t-16}{t^2}}=\frac{1}{-\frac{16}{t^2}+\frac{1}{t}}=\frac{1}{-16\left(\frac{1}{t}-\frac{1}{32}\right)^2+\frac{1}{64}}\ge\frac{1}{\frac{1}{64}}=64\)
\(\Rightarrow P\ge8\). Đẳng thức xảy ra khi \(\hept{\begin{cases}x^2+y^2=32\\xy=8\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2+2\sqrt{2}\\y=-2+2\sqrt{3}\end{cases}}\)
1. Vì a,d>0 nên ta có (a-b)>=0 tương đương a^2 +b^2 >= 2ab rồi chuyển ad xong từng phân thức rồi chia là ra đpcm
Ta có:
\(x^2+x+1\\ =\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> ĐPCM
Đặt : \(A=x^2+x+1\)
=> \(A=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
=> \(A\ge\frac{3}{4},\forall x\)
=> A > 0, \(\forall x\)
Vậy : A > 0
Ta có \(x^2+xy+y^2=x^2+2.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\)
Dấu "=" xảy ra khi x=y=0
x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y