K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đề sai

26 tháng 6 2018

C1: \(\left(x+y\right)\left(x-y\right)=x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

C2: x2-y2=(x-y)(x+y)

  <=> x2-y2-(x-y)(x+y)=0

   <=> x2-y2-[x(x+y)-y(x+y)] = 0

   <=> x2-y2-(x2+xy-xy-y2) = 0

    <=> x2-y2-(x2-y2) = 0

    <=> x2-y2-x2+y2 = 0

    <=> 0 =0 (đúng)

Vậy .....

26 tháng 6 2018

x^2 - y^2 = ( x + y )( x - y )

Co ( x + y )( x - y ) = x^2 - xy + xy - y^2 = x^2 - y^2

Ma x^2 - y^2 = x^2 - y^2

=> x^2 - y^2 = ( x + y )( x - y ) 

26 tháng 5 2018

Khai triển rồi thu gọn

19 tháng 9 2019

đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải

16 tháng 6 2016

Lấy hai vế trừ đi cho nhau rồi nếu có kết quả =0 thì hai hằng đẳng thức này bằng nhau

25 tháng 7 2017

khai triển và giải thích để e hiểu giúp với ạ !!

30 tháng 7 2017

Xét vế trái ta có :

\(x^4+y^4+\left(x+y\right)^4\)

= \(x^4+y^4+\left(\left(x+y\right)^2\right)^2\)

= \(x^4+y^4+\left(x^2+y^2+2xy\right)^2\)

= \(x^4+y^4+x^4+y^4+4x^2y^2+2x^2y^2+4x^3y+4xy^3\)

= \(2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)

= \(2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)

= \(2\left(x^2+xy+y^2\right)^2\)

=VP

Vậy đăng thức đã được chứng minh

Ta có \(x^2+xy+y^2=x^2+2.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\)

Dấu "=" xảy ra khi x=y=0

7 tháng 7 2019

 x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y 
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y

14 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

14 tháng 8 2018

Biến đổi VT:

\(x^4+y^4+\left(x+y\right)^4\)

\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)

\(=2x^4+4x^3y+6x^2y^2+4xy^3+2y^4\)

\(=2\left(x^2+2x^3y+3x^2y^2+2xy^3+y^4\right)\)

\(=2\left(x^2+xy+y^2\right)\left(x^2+xy+y^2\right)\)

\(=2\left(x^2+xy+y^2\right)^2=VP\)

\(\Rightarrowđpcm\)

2 tháng 3 2019

vì nếu nó không bằng nhau thì đâu cần phải cm nên :

=> nó bằng nhau