Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT tương đương
x^2 + y^2 + z^2 - xy - yz - xz >= 0
=> 2 ( x^2 + y^2 + z^2 - xy - yz - xz ) >=0
=> 2 x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz >= 0
=> ( x - y)^2 + (y- z)^2 + ( z- x)^2 >=0 luôn đúng
=> ĐPCM
Sửa: Áp dụng chứng minh \(x^2+y^2>9\)
Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )
Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)
\(\Rightarrow x^2+y^2>9\)( đpcm )
Ta có:
\(x^2+x+1\\ =\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> ĐPCM
Đặt : \(A=x^2+x+1\)
=> \(A=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
=> \(A\ge\frac{3}{4},\forall x\)
=> A > 0, \(\forall x\)
Vậy : A > 0
a, Xét : 3 - E = 3x^3-3xy-3y^3-x^3-xy-y^2/x^2-xy+y^2
= 2x^2-4xy+2y^2/x^2-xy+y^2
= 2.(x^2-2xy+y^2)/x^2-xy+y^2
= 2.(x-y)^2/x^2-xy+y^2
>= 0 ( vì x^2-xy+y^2 > 0 )
Dấu "=" xảy ra <=> x-y=0 <=> x=y
Vậy ..........
b, Có : (x+1995)^2 = x^2+3990+1995^2 = (x^2-3990x+1995^2)+7980x
= (x-1995)^2 + 7980x >= 7980x
=> M < = x/7980x = 1/7980 ( vì x > 0 )
Dấu "=" xảy ra <=> x-1995=0 <=> x=1995
Vậy ...............
Thôi làm thế này đi:3
\(A=-\frac{2xy}{1+xy}=-\frac{2\left(1+xy\right)+2}{1+xy}=\frac{2}{1+xy}-2\)
Áp dụng BĐT Cosi ta có:
\(xy\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
\(\Rightarrow A\ge\frac{2}{1+\frac{1}{2}}-2=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
vậy GTNNA = \(-\frac{2}{3}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
\(A=-\frac{2xy}{1+xy}=-2xy-2\)
Áp dụng BĐT Cosi ta có:
\(2xy\le x^2+y^2=1\)dấu "=" xảy ra khi:
\(\Leftrightarrow\hept{\begin{cases}x^2=y^2\\x^2+y^2=1\end{cases}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\) (thỏa mãn ĐKXĐ vs x,y > 0 )
\(\Rightarrow A\ge-1-2=-3\)
dấu "=" xảy ra khi:
\(\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)(thỏa mãn ĐKXĐ vs x,y > 0 )
vậy GTNN \(A=-3\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)
Ta có \(x^2+xy+y^2=x^2+2.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\)
Dấu "=" xảy ra khi x=y=0
x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y