K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(2x^2+y^2+2xy-4x+9=\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)+5\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+5\ge5\)

Suy ra dieu phai cm

\(2x^2+y^2+2xy-4x+9\)

\(=x^2+2xy+y^2+x^2-4x+4+5\)

\(=\left(x+y\right)^2+x^2-2.2.x+4+5\)

\(=\left(x+y\right)^2+\left(x-2\right)^2+5\)

\(\left(x+y\right)^2>0;\left(x-2\right)^2>0;5>0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2+5>0\)

\(\Rightarrow2x^2+y^2+2xy-4x+9>0\)

27 tháng 8 2020

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

27 tháng 8 2020

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)

22 tháng 9 2021

\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)

Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)

\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)

\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)

21 tháng 9 2021

xy là x.y hay là x và y vậy bn

21 tháng 9 2021

X và y là số nguyên phải ko

NV
18 tháng 6 2019

a/

\(\Leftrightarrow x^2-2xy+y^2+2x^2+10x+26=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-\frac{5}{2}\right)^2+\frac{27}{2}=0\)

\(VT>0\Rightarrow\) ko tồn tại x; y thỏa mãn

b/

\(\Leftrightarrow4x^2-4x+1+3\left(y^2+10y+25\right)+2=0\)

\(\Leftrightarrow\left(2x-1\right)^2+3\left(y+5\right)^2+2=0\)

\(\Rightarrow\) Không tồn tại x; y thỏa mãn

c/

\(3\left(x^2-4x+4\right)+6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{34}{3}=0\)

\(\Leftrightarrow3\left(x-2\right)+6\left(y-\frac{5}{3}\right)^2+\frac{34}{3}=0\)

Không tồn tại x; y thỏa mãn

17 tháng 11 2017

Ta có:

x2 – 2xy + y2 + 1

= (x2 – 2xy + y2) + 1

= (x – y)2 + 1.

(x – y)2 ≥ 0 với mọi x, y ∈ R

⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).

28 tháng 6 2017

Ta có:\(2x^2+2xy+4x+y^2+8\)

         \(=x^2+4x+4+x^2+2xy+y^2+4\)

          \(=\left(x+2\right)^2+\left(x+y\right)^2+4\)

                  Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)

                           \(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)

Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y

28 tháng 6 2017

2x^2+2xy+4x+y^2+8

 = x^2+2xy+y^2 +x^2 + 4x+4+4 

=(x+y)^2 + (x+2)^2 +4

Vì (x+y)^2 và (x+2)^2 đều >=0 

Nên (x+y)^2+(x+2)^2+4   >=  4  >0

Vậy.........n.n

12 tháng 10 2023

`x^2 -4x+4-y^2`

`=(x^2 -4x+4)-y^2`

`=(x-2)^2 -y^2`

`=(x-2-y)(x-2+y)`

`x^2+2xy+y^2-x-y`

`=(x^2+2xy+y^2) -(x+y)`

`=(x+y)^2 -(x+y)`

`=(x+y)(x+y-1)`

`x^2-2xy+y^2-9`

`=(x^2-2xy+y^2)-3^2`

`=(x-y)^2-3^3`

`=(x-y-3)(x-y+3)`

Tách ra đi cậu.

12 tháng 10 2023

https://hoc24.vn/cau-hoi/927x118.8505894378996

giúp mik với ạ

27 tháng 3 2019

Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:

\(x^4+y^2\ge2x^2y\)

\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)

NV
8 tháng 6 2019

BĐT Vasc cơ bản:

Cho các số dương \(abc=1\) thì:

\(\sum\frac{1}{a^2+a+1}\ge1\)

Chứng minh:

Đặt \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\) thì BĐT trở thành:

\(\sum\frac{x^4}{x^4+x^2yz+y^2z^2}\ge1\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+y^2xz+z^2xy+x^2y^2+y^2z^2+z^2x^2}\ge1\)

Nhân chéo và thực hiện khai triển:

\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)

Sau đó rút gọn ta được:

\(x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)

BĐT trên chính là dạng \(a^2+b^2+c^2\ge ab+ac+bc\)

Vậy BĐT đã được chứng minh xong

29 tháng 10 2018

a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)

\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)

\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)

\(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)

nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)

b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-y\right)^2\ge0\forall x;y\)

\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)

nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)