K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(2x^2+y^2+2xy-4x+9=\left(x^2-4x+4\right)+\left(x^2+2xy+y^2\right)+5\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+5\ge5\)

Suy ra dieu phai cm

\(2x^2+y^2+2xy-4x+9\)

\(=x^2+2xy+y^2+x^2-4x+4+5\)

\(=\left(x+y\right)^2+x^2-2.2.x+4+5\)

\(=\left(x+y\right)^2+\left(x-2\right)^2+5\)

\(\left(x+y\right)^2>0;\left(x-2\right)^2>0;5>0\)

\(\Rightarrow\left(x+y\right)^2+\left(x-2\right)^2+5>0\)

\(\Rightarrow2x^2+y^2+2xy-4x+9>0\)

27 tháng 8 2020

\(A=x^2+2y^2-2xy+4x-6y+6\)

\(=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)-7\)

\(=\left(x-y\right)^2+\left(x+2\right)^2+\left(y-3\right)^2-7\)

Đề hình như có gì đó không đúng

27 tháng 8 2020

Ta có: \(A=x^2+2y^2-2xy+4x-6y+6=\left(x^2-2xy+y^2\right)\)          \(+4\left(x-y\right)+4+y^2-2y+1+1=\left[\left(x-y\right)^2+4\left(x-y\right)+4\right]\)\(+\left(y-1\right)^2+1=\left(x-y+2\right)^2+\left(y-1\right)^2+1\)

Ta có: \(\left(x-y+2\right)^2\ge0\forall x,y\)\(\left(y-1\right)^2\ge0\forall y\)nên \(\left(x-y+2\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

Vậy \(A=x^2+2y^2-2xy+4x-6y+6>0\forall x,y\)(đpcm)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

26 tháng 8 2017

a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)+3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)

b, x4-3x2+9=x4- 6x+32 +3x2=(x2-3)2 +3x>0

c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0

d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0

e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0

nhớ bấm đúng cho mình nhé!

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

11 tháng 8 2015

bạn c/m cho nó lớn hơn hoặc nhỏ hơn 0 đi mk ngại làm vì hơi nhìu ^.^ sory

25 tháng 8 2016

bài này chỉ có hsg như tui, alibaba nguyễn, hoàng lê bảo ngọc ..... làm dc

a)

\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)

\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)\(y\)

b)

\(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)

\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)

\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)

Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)

\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)

\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)

\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)

c)

\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)

\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)

\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)

Ta có \(\left(2x+1\right)^2\ge0\)với mọi  \(x\)

\(\left(y-1\right)^2\ge\)với mọi \(y\)

\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)

và \(1>0\)

\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)

1 tháng 9 2017

a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)

b. \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)

c.  tương tự ý b

15 tháng 6 2018

Vào tìm câu hỏi tương tự thử xem.

Chúc bạn học tốthihi

15 tháng 6 2018

giải ra giùm đi

28 tháng 10 2018

\(x^2-2xy+y^2+1=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1>0\)

Vậy \(\left(x-y\right)^2+1>0\) với mọi \(x,y\in R\)