K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

c,  Để BT có nghĩa thì  \(x^2-4x+3\ge0\)

                                    \(\Leftrightarrow x^2-4x+4\ge1\)

                                    \(\Leftrightarrow\left(x-2\right)^2\ge1\)

                                    \(\Leftrightarrow\sqrt{\left(x-2\right)^2}\ge1\)

                                      \(\Leftrightarrow|x-2|\ge1\)

\(\Leftrightarrow x-2\ge1\) và   \(x-2\le-1\)

\(\Leftrightarrow x\ge3;x\le1\)

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính giá trị...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.

2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)

3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)

4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.

5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với

30 tháng 3 2020
https://i.imgur.com/iX7y3qX.jpg
30 tháng 3 2020
https://i.imgur.com/GMDpx0f.jpg
6 tháng 12 2019
https://i.imgur.com/uIbkS6G.jpg
21 tháng 6 2019

\(a,\sqrt{4-4x+x^2}+\sqrt{\frac{2}{x^2+6x+9}}=\sqrt{\left(x-2\right)^2}+\sqrt{\frac{2}{\left(x+3\right)^2}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x>-3\end{cases}\Rightarrow}x\ge-2}\)

\(b,\frac{5\sqrt{x}}{\sqrt{x}-3}+\frac{2}{\sqrt{x}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x>0\\\sqrt{x}-3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\ne\sqrt{9}\end{cases}\Rightarrow}\hept{\begin{cases}x>0\\x\ne9\end{cases}}}\)

\(c,\sqrt{3-\sqrt{x}}\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\3-\sqrt{x}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}\le3\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}\le9\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x\le3\end{cases}}}\)

\(\Rightarrow0< x\le3\)