K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2019

Với hai số thực bất kì \(4< a< b\) ta có:

\(y\left(b\right)-y\left(a\right)=\sqrt{b-4}-\sqrt{a-4}+\sqrt{b+1}-\sqrt{a+1}\)

\(=\frac{b-a}{\sqrt{b-4}+\sqrt{a-4}}+\frac{b-a}{\sqrt{b+1}+\sqrt{a+1}}=\left(b-a\right)\left(\frac{1}{\sqrt{b-4}+\sqrt{a-4}}+\frac{1}{\sqrt{b+1}+\sqrt{a+1}}\right)\)

\(\left\{{}\begin{matrix}b>a\Rightarrow b-a>0\\\frac{1}{\sqrt{b-4}+\sqrt{a-4}}+\frac{1}{\sqrt{b+1}+\sqrt{a+1}}>0\end{matrix}\right.\)

\(\Rightarrow y\left(b\right)-y\left(a\right)>0\) \(\forall b>a\)

\(\Rightarrow y\) đồng biến trên miền đã cho

8 tháng 8 2018

Đáp án là D.

          Sai ở bước III (bảng biến thiên)

26 tháng 1 2016

+TXĐ: X\(\in\)R

+y'=\(3x^2-6x\Rightarrow y'=0\Leftrightarrow\int_{x=2;y=0}^{x=0;y=4}\)

+y''=6(x-1)=> y' = 0 khi x = 1;y=2

+

x       -\(\infty\)                   0                      1                        2                        +\(\infty\)
y'                 +            0           -                           -        0       +
y

 

26 tháng 1 2016

2.  y' = 3x2 - 6x + m <0 khi x thuộc ( -1; 3)  => m/3 =-3 =>  m =-9

24 tháng 10 2021

TXĐ: D=[0;+\(\infty\))

Hàm số này luôn đồng biến với mọi x thuộc D

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit