phân tích đa thức thành nhân tử
x4 + 2010x2 + 2009x + 2011
không tích trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi đa thức phân tích là (x2+ax+b)(x2+cx+d)
(x2+ax+b)(x2+cx+d)=x4+(c+a)x3+x2(d+ac+b)+x(ad+bc)+bd
đồng nhất hệ số ta có a+c = 0
d+b+ac=2009
ad+bc = 2008
bd = 2009
=> a = 1 ; b =1 ; c = -1 ; d =2009
vậy đa thức phân tích là (x^2+x+1)(x^2-x+2009)
bạn phân tích ra xem có đúng ko nha
\(x^4+2009x^2+2008x+2009\)
\(=\left(x^4+x^3+x^2\right)+\left(-x^3-x^2-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
x4+4 = (x2)2+22 = x4 + 2.x2.2 + 4 – 4x2
= (x2 + 2)2 – (2x)2 = (x2-2x+2)(x2+2x+2)
Ta có: \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
x4+2009x2+2008x+2009
=(x4-x)+(2009x2+2009x+2009)
=x(x3-1)+2009(x2+x+1)
=x(x-1)(x2+x+1)+2009(x2+x+1)
=(x2+x+1)(x(x-1)+2009)
=(x2+x+1)(x2-x+2009)
k mình nha, chúc bạn học giỏi!!!
cách 1 dùng hệ số bất định
có hệ
a+c=0
ac+b+d= 2009
ad+bc=2008
bd=2009
Ta tìm được a=1,b=1,d=2009,c=-1
=> (x^2+x+1)(x^2-x+2009)=0
Cách 2:
có (x^2+m)^2 =2mx^2+m^2 +2009x^2+2009x+2009=x^2(2009+2m) +2008x +2009+m^2
xét \delta thấy vô nghiệm => PT vô nghiệm
x4 + 4
= (x2)2 + 22
= x4 + 2.x2.2 + 4 – 4x2
(Thêm bớt 2.x2.2 để có HĐT (1))
= (x2 + 2)2 – (2x)2
(Xuất hiện HĐT (3))
= (x2 + 2 – 2x)(x2 + 2 + 2x)
x 4 - 5 x 2 + 4 = x 4 - 4 x 2 - x 2 + 4 = x 4 - 4 x 2 - x 2 - 4 = x 2 x 2 - 4 - x 2 - 4 = x 2 - 4 x 2 - 1 = x + 2 x - 2 x + 1 x - 1
Sửa đề: x^4+4y^4
=x^4+4x^2y^2+4y^4-4x^2y^2
=(x^2+2y^2)^2-4x^2y^2
=(x^2-2xy+2y^2)(x^2+2xy+2y^2)
\(x^4+2010x^2+2009x+2010\)
\(=x^4-x+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2010\right]=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)