cho x,y là 2 số dương thỏa mãn x^3 +y^3 = x^5 +y^5. Chứng minh x^2 +y^2 <= 1+xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x^2+y^2+z^2=1\Rightarrow x^2< 1\Rightarrow x< 1\)
\(\Rightarrow x^5< x^2\)
Tương tự ta có: \(y< 1\Rightarrow y^6< y^2\); \(z< 1\Rightarrow z^7< z^2\)
\(\Rightarrow x^5+y^6+z^7< x^2+y^2+z^2\)
\(\Rightarrow x^5+y^6+z^7< 1\)
Với mọi số thực ta luôn có:
`(x-y)^2>=0`
`<=>x^2-2xy+y^2>=0`
`<=>x^2+y^2>=2xy`
`<=>(x+y)^2>=4xy`
`<=>(x+y)^2>=16`
`<=>x+y>=4(đpcm)`
\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)
\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))
=> \(\dfrac{x+y+6}{3x+3y+13}\)≤\(\dfrac{2}{5}\)
<=> \(5\left(x+y+6\right)\)≤\(2\left(3x+3y+13\right)\)
<=>\(6x+6y+26-5x-5y-30\)≥\(0\)
<=> \(x+y-4\)≥\(0\)
Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)≥\(\sqrt{ab}\)
Ta có \(\dfrac{x+y}{2}\)≥\(\sqrt{xy}\)
<=>\(x+y\) ≥ 2\(\sqrt{xy}\)
=>2\(\sqrt{xy}-4\)≥\(0\)
<=> \(4-4\)≥0
<=>0≥0 ( Luôn đúng )
Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)≤\(\dfrac{2}{5}\)
Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)
Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)
\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).
Dấu "=" xảy ra <=> x=y=1/2.
\(2x^3+2y^3=x^3+x^5+y^3+y^5\ge2x^4+2y^4\)
\(\Rightarrow x^3+y^3\ge x^4+y^4\Rightarrow x^2+y^2+x^3+y^3\ge x^4+x^2+y^4+y^2\ge2x^3+2y^3\)
\(\Rightarrow x^2+y^2\ge x^3+y^3\Rightarrow x+y+x^2+y^2\ge x+x^3+y+y^3\ge2x^2+2y^2\)
\(\Rightarrow x+y\ge x^2+y^2\)
\(\Rightarrow x+y\ge x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Rightarrow x^2-xy+y^2\le1\Rightarrow x^2+y^2\le1+xy\)
Dấu "=" xảy ra khi \(x=y=1\)
`2x^3 + 2y^3 = x^3 + x^5 + y^3 + y^5 >= 2x^4 + 2y^4`