Chung minh rằng: ( n!+1),(n+1)!+1=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(1.3.5...\left(2n-1\right)=\frac{1.3.5...\left(2n-1\right).2.4.6....2n}{2.4.6...2n}\)
\(=\frac{1.2.3....2n}{1.2.2.2.3.2...n.2}=\frac{1.2.3...2n}{2^n\left(1.2.3...n\right)}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n}\)
Từ đây ta có:
\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)...2n}=\frac{\left(n+1\right)\left(n+2\right)...2n}{2^n\left(n+1\right)\left(n+2\right)...2n}=\frac{1}{2^n}\)
gọi ƯCLN(2n+1;6n+5 ) là d ( d là số tự nhiên )
Ta có :
2n+1 chia hết cho d ; 6n+5 chia hết cho d
=> 3.(2n+1) chia hết cho d ; 6n+5 chia hết cho d
=> 6n+3 chia hết cho d ; 6n+5 chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
=> d=1;2
Vì 2n+1 ; 6n+5 là số lẻ không chia hết cho 2
=> d=1
=> ƯCLN(2n+1;6n+5) la 1
=> điều phải chứng minh
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Vì 396 : a dư 30 nên a > 30
Theo bài ra ta có :
396 chia a dư 30
=> ( 396 - 30 ) \(⋮\)a => 366 \(⋮\)a
Lại có : 473 chia a dư 23
=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a
Từ (1) và (2) => a \(\in\)ƯC( 366;450)
Ta có : 366 = 2 .3 . 61
450 = 2 . 32 . 52
Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6
=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }
Vậy a \(\in\){1;2;3;6}
giả sử (n!+1;(n+1)!+1)=a(n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a
ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!
hay p | n.n! nên p là số nguyên tố bé hơn n
nên p | n! mà p| n! +1 .mâu thuẫn
vậy giả sử sai. nên (n!+1;(n+1)!+1)=1
giả sử (n!+1;(n+1)!+1)=a(n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a
ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!
hay p | n.n! nên p là số nguyên tố bé hơn n
nên p | n! mà p| n! +1 .mâu thuẫn
vậy giả sử sai. nên (n!+1;(n+1)!+1)=1