K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giả sử (n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a

ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!

hay p | n.n! nên p là số nguyên tố bé hơn n

nên p | n! mà p| n! +1 .mâu thuẫn

vậy giả sử sai. nên 

giả sử (n!+1;(n+1)!+1)=a vs a>1 nên tồn tại số nguyên tố p sao cho p|a

ta có p | n!+1 và p | (n+1)!+1 nên p | (n+1)!-n!

hay p | n.n! nên p là số nguyên tố bé hơn n

nên p | n! mà p| n! +1 .mâu thuẫn

vậy giả sử sai. nên 

13 tháng 5 2020

bài làm

n*1=n

vì n/n=1 và n là số tự nhiên  

C2:

xét 1*1=1

2*1=2

3*1=3

.

.

.

..

.

n*1=n 

13 tháng 5 2020

n*1*1=n*1

=> n*1=n*1

=> n=n

subscribe my youtube channe; Azaig. Tks :)))

NV
2 tháng 2

\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)

\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)

\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)

\(=5^{2021-\dfrac{1}{2021}}\)

\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)

\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)

8 tháng 9 2019

Lớp 12 ?!

Ta có:

7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N

8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N

\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

31 tháng 12 2018

2 tháng 1 2020

Đáp án B