K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBEM vuông tại E và ΔCFM vuông tại F có

BM=CM

góc B=góc C

=>ΔBEM=ΔCFM

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF

c: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD

=>DB=DC

=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng

17 tháng 11 2022

a: Xét tứ giác AEMD có

góc AEM=góc ADM=góc DAE=90 độ

nên AEMD là hình chữ nhật

b: Vì M đối xứng với N qua AB

nên ABvuông góc với MN tại E và E là trung điểm của MN

Xét tứ giác AMBN có

E là trung điểm chung của AB và MN

nên AMBN là hình bình hành

mà MA=MB

nên AMBN là hình thoi

c: Xét tứ giác ANMC có

NM//AC

NM=AC

Do đó: ANMC là hình bình hành

=>AM cắt CN tại trung điểm của mỗi đường

=>C,O,N thẳng hàg

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

 a/ có: AB = AC 
BD = CE 
=> AB / BD = AC / CE 
theo định lí đảo Thales ta suy ra: DE // BC (đpcm) 
b/ có: MBD và NCE là hai tgiác vuông có cạnh huyền bằng nhau là: 
BD = CE. 
mặt khác do tính chất góc đối đỉnh ta có: 
gócMBD = gócABC; gócNCE = gócACB 
mà gócABC = gócACB (ABC là tgiác cân) 
=> gócMBD = gócNCE 
=> tgiácMBD = tgiácNCE 
=> DM = EN (đpcm) 
c/ Gọi K là trung điểm BC, do ABC là tgiác cân nên AK vuông BC (đường trung tuyến cũng là đường cao) 
có BK = KC 
mà MB = NC (tgiác MBD = tgiác NCE) 
=> MB + BK = KC + CN 
=> MK = KN 
hiển nhiên AK vuông MN 
tgiác AMN có AK vừa đường cao vừa trung tuyến nên là tgiác cân. 
d/ IB cắt AM tại P, IC cắt AN tại Q 
ta dể cm ABM và ACN là hai tgiác bằng nhau (có ba cạnh tương ứng bằng nhau đôi một) 
nên hai đường cao tương ứng bằng nhau, tức là: 
BP = CQ 
=> tgiác PAB = tgiác QAC (hai tgiác vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau) 
=> AP = AQ 
xét hai tgiác PAI có QAI là hai tgiác vuông có cạnh huyền:AI chung và 
AP = AQ 
=> tgiác API = tgiác QAI 
=> góc PAI = góc QAI 
mà do ta có hai tgiác bằng nhau nên: 
góc PAB = góc QAC 
=>góc BAI = góc CAI 
Vậy: AI là tia phân giác của góc BAC và góc MAN. 
*Đúng thật bài này cũng dể, em làm không được thì thấy lo rồi, nhưng đã post lên đây là có ý học hỏi. các Bác ở trên đừng nên nặng lời như vậy. người ta đánh kẻ chạy đi chứ không ai đánh kẻ chạy lại bao giờ. Chỉ đáng thương cho kẻ không biết mình ngu ở đâu...