1.Viết các biểu thức sau dưới dạng bình phương của 1 tổng và 1 hiệu :
a)16u2v4 - 8uv2+1
b) 4x2-12x+4
2.Tính:
(x+1-2y)2
3.C/m:
x2+ y2= (x+y2)-2xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: \(x^2+3x+1\rightarrow x^2+2x+1\)
\(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+y^2+2xy=\left(x+y\right)^2\)
c) \(9x^2+12x+4=\left(3x+2\right)^2\)
d) \(-4x^2-9-12x=-\left(4x^2+12x+9\right)=-\left(2x+3\right)^2\)
\(a.\)
\(z^2-6z+5-t^2-4t\)
\(=z^2-6z+9-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(b.\)
\(4x^2-12x-y^2+2y+1\)
Câu này đề sai sao ấy em !
b, mik nghĩ đề sửa thành: \(4x^2-12x-y^2+2y+8\)
\(=4x^2-12x+9-y^2+2y-1\)
\(=\left(2x\right)^2-2.2.3.x+3^2-\left(y^2-2y+1\right)\)
\(=\left(2x-3\right)^2-\left(y-1\right)^2\)
a) ( 2 x + 1 ) 2 . b) ( 3 x – 2 ) 2 .
c) 1 2 ab 2 + 1 2 . d) ( 4 uv 2 – 1 ) 2 .
4x²y⁴ - 4xy³ + y²
= (2xy²)² - 2.2xy².y + y²
= (2xy² - y)²
------------
Sửa đề:
(x - 2y)² - 4(x - 2y) + 4
= (x - 2y)² - 2.(x - 2y).2 + 2²
= (x - 2y - 2)²
------------
25x² - 5xy + 1/4 y²
= (5x)² - 2.5xy.y/2 + (y/2)²
= (5x - y/2)²
\(4x^2y^4-4xy^3+y^2\)
\(=\left(2xy^2\right)^2-2\cdot2xy^2\cdot y+y^2\)
\(=\left(2xy^2-y\right)^2\)
_____
\(\left(x-2y\right)^2-4\left(x-2y\right)+4\)
\(=\left(x-2y\right)^2-2\cdot\left(x-2y\right)\cdot2+2^2\)
\(=\left[\left(x-2y\right)-2\right]^2\)
\(=\left(x-2y-2\right)^2\)
____
\(25x^2-5xy+\dfrac{1}{4}y^2\)
\(=\left(5x\right)^2-2\cdot\dfrac{5}{2}xy+\left(\dfrac{1}{2}y\right)^2\)
\(=\left(5x\right)^2-2\cdot\dfrac{1}{2}y\cdot5x+\left(\dfrac{1}{2}y\right)^2\)
\(=\left(5x-\dfrac{1}{2}y\right)^2\)
này mình có vài câu không làm được, xin lỗi bạn nha
\(b,16x^2-8x+1=\left(4x-1\right)^2\\ c,4x^2+12xy+9y^2=\left(2x+3y\right)^2\\ e,=x^2+2x+1+y^2+2y+1+2\left(x+1\right)\left(y+1\right)\\ =\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\\ =\left[\left(x+1\right)+\left(y+1\right)\right]^2=\left(x+y+2\right)^2\\ g,=x^2-2x\left(y+2\right)+\left(x+2\right)^2=\left[x-\left(y+2\right)\right]^2=\left(x-y-2\right)^2\\ h,=\left[x+\left(y+1\right)\right]^2=\left(x+y+1\right)^2\)
`a)x^2-2x+2+4y^2+4y`
`=x^2-2x+1+4y^2+4y+1`
`=(x-1)^2+(2y+1)^2`
`b)4x^2+y^2+12x+4y+13`
`=4x^2+12x+9+y^2+4y+4`
`=(2x+3)^2+(y+2)^2`
`c)x^2+17+4y^2+8x+4y`
`=x^2+8x+16+4y^2+4y+1`
`=(x+4)^2+(2y+1)^2`
`d)4x^2-12xy+y^2-4y+13`
`=4x^2-12x+9+y^2-4y+4`
`=(2x-3)^2+(y-2)^2`
a) \(x^2-2x+2+4y^2+4y=\left(x-1\right)^2+\left(2y+1\right)^2\)
b) \(4x^2+y^2+12x+4y+13=\left(2x+3\right)^2+\left(y+2\right)^2\)
c) \(x^2+17+4y^2+8x+4y=\left(x+4\right)^2+\left(2y+1\right)^2\)
d) \(4x^2-12x+y^2-4y+13=\left(2x-3\right)^2+\left(y-2\right)^2\)
a) ( x + 1 ) 2 . b) ( x – 4 ) 2 .
c) x 2 4 + x + 1 ; d) ( 2 x – 2 y ) 2 .
\(1.z^2-6z+5-t^2-4t\)
\(=\left(z^2-6z+9\right)-\left(t^2+4t+4\right)\)
\(=\left(z-3\right)^2-\left(t+2\right)^2\)
\(3,x^2-2xy+2y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
Bài 1 : \(a,\)\(16u^2v^4-8uv^2+1\)
\(=\left(4uv^2\right)^2-2.4uv^2.1+1^2\)
\(=\left(4uv^2-1\right)^2\)
\(b,\)\(4x^2-12x+4\)
\(\left(2x\right)^2-2.2x.3+3^2-5\)
\(=\left(2x-3\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(2x-3-\sqrt{5}\right)\left(2x-3+\sqrt{5}\right)\)
Bài 2 :
\(\left(x+1-2y\right)^2\)
\(=\left[\left(x-1\right)-2y\right]^2\)
\(=\left(x-1\right)^2-2\left(x-1\right).2y+\left(2y\right)^2\)
\(=x^2-2x+1-4xy+4y+4y^2\)
Bài 3 : ( Đề nhầm tí nha , coi lại nhé )
\(x^2+y^2=\left(x+y\right)^2-2xy\)
\(\Rightarrow x^2+y^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=x^2+y^2\) ( luôn đúng với \(\forall x\))
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)\(\left(đpcm\right)\)