Cho \(a\ge2\), Tìm giá trị nhỏ nhất của:
\(A=a+\dfrac{1}{a}\)
\(B=a+\dfrac{1}{a^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)D` xác định `<=>a-1 ne 0<=>a ne 1`
`b)` Với `a ne 1` có:
`D=([a-1]/[a^2+a+1]-[1-3a+a^2]/[(a-1)(a^2+a+1)]-1/[a-1]).[1-a]/[a^2+1]`
`D=[(a-1)^2-1+3a-a^2-a^2-a-1]/[(a-1)(a^2+a+1)].[-(a-1)]/[a^2+1]`
`D=[a^2-2a+1-1+3a-a^2-a^2-a-1]/[(-a^2-1)(a^2+a+1)]`
`D=[-a^2-1]/[(-a^2-1)(a^2+a+1)]=1/[a^2+a+1]`
`c)` Với `a ne 1` có:
`1/D=1/[1/[a^2+a+1]]=a^2+a+1=(a+1/2)^2+3/4`
Vì `(a+1/2)^2 >= 0 AA a ne 1`
`=>(a+1/2)^2+3/4 >= 3/4 AA a ne 1`
Hay `1/D >= 3/4 AA a ne 1=>1/D _[mi n]=3/4`
Dấu "`=`" xảy ra `<=>a=-1/2` (t/m).
\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel có:
\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)
\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)
\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{1}{2}ab\)
Tương tự: \(\dfrac{b}{1+c^2}\ge b-\dfrac{1}{2}bc\) ; \(\dfrac{c}{1+a^2}\ge c-\dfrac{1}{2}ca\)
Cộng vế:
\(P\ge a+b+c-\dfrac{1}{2}\left(ab+bc+ca\right)\ge a+b+c-\dfrac{1}{6}\left(a+b+c\right)^2=\dfrac{3}{2}\)
\(P_{min}=\dfrac{3}{2}\) khi \(a=b=c=1\)
\(GT\Rightarrow a+b=5\)
\(P=\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}=\dfrac{4}{5}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)
Để em!
\(A=\frac{a}{4}+\frac{1}{a}+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}.\frac{1}{a}}+\frac{3a}{4}\)
\(\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Dấu "=" xảy ra khi a = 2
\(B=a+\frac{1}{a^2}+\frac{1}{4}\ge a+2\sqrt{\frac{1}{4a^2}}\)
\(=a+\frac{1}{a}\ge\frac{5}{2}\) (theo câu a)
Đẳng thức xảy ra khi a = 2
\(\text{Ta có : }a\ge2\)
\(A=a+\frac{1}{a}\)
\(A\) đạt giá trị nhỏ nhất khi a nhỏ nhất và \(\frac{1}{a}\)nhỏ nhất
\(\frac{1}{a}\) nhỏ nhất \(\Leftrightarrow\text{ }\)a lớn nhất
\(\Rightarrow\) a = 2
Thay vào biểu thức ta được :
\(A=2+\frac{1}{2}=\frac{4}{2}+\frac{1}{2}=\frac{5}{2}\)
Vậy GTNN của A = \(\frac{5}{2}\)
\(B=a+\frac{1}{a^2}\)
\(B\) đạt giá trị nhỏ nhất khi a nhỏ nhất và \(\frac{1}{a}\)nhỏ nhất
\(\frac{1}{a^2}\) nhỏ nhất \(\Rightarrow\) \(a^2\) lớn nhất \(\Rightarrow\) a lớn nhất
\(\Rightarrow\) a = 2
Thay a = 2 vào biểu thức ta được :
\(B=a+\frac{1}{a^2}=2+\frac{1}{2^2}=2+\frac{1}{4}=\frac{8}{4}+\frac{1}{4}=\frac{9}{4}\)
Vậy GTNN của B = \(\frac{9}{4}\)