Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)
\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)
\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)
\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le3\)
\(M=2\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(a+b+c\right)+\dfrac{9}{a+b+c}\)
\(=2\left[a+b+c+\dfrac{9}{a+b+c}\right]-\dfrac{9}{a+b+c}\ge2.\sqrt{9}-\dfrac{9}{3}=6-3=3\)Min = 3 khi a=b=c =1
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
Bài 1:
Sử dụng biến đổi tương đương. Ta có:
\(a^5+b^5\geq a^3b^2+a^2b^3\)
\(\Leftrightarrow a^5+b^5-a^3b^2-a^2b^3\geq 0\)
\(\Leftrightarrow a^3(a^2-b^2)-b^3(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a^3-b^3)(a^2-b^2)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^2+ab+b^2)(a+b)\geq 0\) (luôn đúng với mọi $a,b$ dương)
Ta có đpcm.
Dấu bằng xảy ra khi \((a-b)^2=0\Leftrightarrow a=b\)
Bài 2: Sử dụng kết quả bài 1:
\(a^5+b^5\geq a^3b^2+a^2b^3\Rightarrow a^5+b^5+ab\geq a^3b^2+a^2b^3+ab\)
\(\Rightarrow \frac{ab}{a^5+b^5+ab}\leq \frac{ab}{a^3b^2+a^2b^3+ab}=\frac{1}{a^2b+ab^2+1}=\frac{1}{a^2b+ab^2+abc}=\frac{1}{ab(a+b+c)}\)
Hoàn toàn tt:
\(\frac{bc}{b^5+c^5+bc}\leq \frac{1}{bc(a+b+c)}; \frac{ca}{c^5+a^5+ac}\leq \frac{1}{ac(a+b+c)}\)
Do đó:
\(P\leq \frac{1}{ab(a+b+c)}+\frac{1}{bc(a+b+c)}+\frac{1}{ac(a+b+c)}\). Thay \(1=abc\)
\(\Leftrightarrow P\leq \frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\) (đpcm)
ta có P2 = (\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\))2
= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\dfrac{bc}{a}.\dfrac{ac}{b}+2.\dfrac{ac}{b}.\dfrac{ab}{c}+2.\dfrac{bc}{a}.\dfrac{ab}{c}\)
= \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.\left(a^2+b^2+c^2\right)\)
=\(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}+2.1\)
nhận thấy \(\dfrac{\left(bc\right)^2}{a^2}+\dfrac{\left(ac\right)^2}{b^2}+\dfrac{\left(ab\right)^2}{c^2}\ge0\)
==> P2 \(\ge2\) ==> p \(\ge\) \(\sqrt{2}\)
dấu ''='' xảy ra ............
vậy.............
p/s : mk lm bừa
tìm trc khi hỏi Câu hỏi của mai - Toán lớp 9 | Học trực tuyến
Cho a,b,c >0 và a2 + b2 + c2 = 3 CMR :
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge\dfrac{9}{a+b+c}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{a^2}{ab}+\frac{b^2}{bc}+\frac{c^2}{ca}\geq \frac{(a+b+c)^2}{ab+bc+ac}(*)\)
Giờ ta sẽ đi CM: \(\frac{(a+b+c)^2}{ab+bc+ac}\geq \frac{9}{a+b+c}(**)\)
Đặt \(a+b+c=t(t>0)\Rightarrow (a+b+c)^2=t^2\)
\(\Leftrightarrow 3+2(ab+bc+ac)=t^2\Rightarrow ab+bc+ac=\frac{t^2-3}{2}\)
Khi đó:
\((**)\Leftrightarrow (a+b+c)^3\geq 9(ab+bc+ac)\)
\(\Leftrightarrow t^3\geq 9\left(\frac{t^2-3}{2}\right)\)
\(\Leftrightarrow 2t^3-9t^2+27\geq 0\)
\(\Leftrightarrow (2t+3)(t-3)^2\geq 0\) (luôn đúng với $t>0$)
Do đó \((**)\) đúng.
Từ \((*);(**)\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{9}{a+b+c}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=1\)
Chị Akai Haruma ơi chỗ (*) áp dụngbđt (a+b+c)2 >= 3(ab+bc+ac)
đk ko ạ
Bài 1:
\(P=(x+1)\left(1+\frac{1}{y}\right)+(y+1)\left(1+\frac{1}{x}\right)\)
\(=2+x+y+\frac{x}{y}+\frac{y}{x}+\frac{1}{x}+\frac{1}{y}\)
Áp dụng BĐT Cô-si:
\(\frac{x}{y}+\frac{y}{x}\geq 2\)
\(x+\frac{1}{2x}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
\(y+\frac{1}{2y}\geq 2\sqrt{\frac{1}{2}}=\sqrt{2}\)
Áp dụng BĐT SVac-xơ kết hợp với Cô-si:
\(\frac{1}{2x}+\frac{1}{2y}\geq \frac{4}{2x+2y}=\frac{2}{x+y}\geq \frac{2}{\sqrt{2(x^2+y^2)}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
Cộng các BĐT trên :
\(\Rightarrow P\geq 2+2+\sqrt{2}+\sqrt{2}+\sqrt{2}=4+3\sqrt{2}\)
Vậy \(P_{\min}=4+3\sqrt{2}\Leftrightarrow a=b=\frac{1}{\sqrt{2}}\)
Bài 2:
Áp dụng BĐT Svac-xơ:
\(\frac{1}{a+3b}+\frac{1}{b+a+2c}\geq \frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{b+c+2a}\geq \frac{4}{2b+4c+2a}=\frac{2}{b+2c+a}\)
\(\frac{1}{c+3a}+\frac{1}{c+a+2b}\geq \frac{4}{2c+4a+2b}=\frac{2}{c+2a+b}\)
Cộng theo vế và rút gọn :
\(\Rightarrow \frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\geq \frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$