K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(S=\dfrac{1}{a^3+b^3}+\dfrac{\dfrac{9}{4}}{3a^2b}+\dfrac{\dfrac{9}{4}}{3ab^2}+\dfrac{1}{4ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng Engel có:

\(S\ge\dfrac{\left(1+\dfrac{3}{2}+\dfrac{3}{2}\right)^2}{a^3+3a^2b+3ab^2+b^3}+\dfrac{1}{4ab}.\dfrac{4}{a+b}\)

\(\Leftrightarrow S\ge\dfrac{16}{\left(a+b\right)^3}+\dfrac{1}{\left(a+b\right)^2}.\dfrac{4}{a+b}\)

\(\Leftrightarrow S\ge\dfrac{16}{1}+\dfrac{1}{1}.\dfrac{4}{1}=20\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

Vậy GTNN của \(S=20\) khi \(a=b=\dfrac{1}{2}\)

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

9 tháng 12 2018

\(A=\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}+3\\ =\left(\dfrac{1}{2a-a^2}+\dfrac{1}{2b-b^2}+\dfrac{1}{2c-c^2}\right)+3\\ \overset{AM-GM}{\ge}\dfrac{9}{2a-a^2+2b-b^2+2c-c^2}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ =\dfrac{9}{\left(2a+2b+2c\right)-\left(a^2+b^2+c^2\right)}+3\\ \ge\dfrac{9}{2\left(a+b+c\right)-\dfrac{\left(a+b+c\right)^2}{3}}+3\\ =\dfrac{9}{2\cdot1-\dfrac{1}{3}}+3=\dfrac{42}{5}\)

Dấu \("="\) xảy ra khi : \(\left\{{}\begin{matrix}2a-a^2=2b-b^2=2c-c^2\\a=b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow a=b=c=\dfrac{1}{3}\)

9 tháng 12 2018

Vậy \(A_{Min}=\dfrac{42}{5}\) khi \(a=b=c=\dfrac{1}{3}\)

26 tháng 10 2017

HÌnh như là \(a+b+c\le\dfrac{3}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\Rightarrow\dfrac{1}{2}\ge\sqrt[3]{abc}\)

Áp dụng BĐT Holder ta có:

\(A=\left(3+\dfrac{1}{a}+\dfrac{1}{b}\right)\left(3+\dfrac{1}{b}+\dfrac{1}{c}\right)\left(3+\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\ge\left(\sqrt[3]{3^3}+\dfrac{1}{\sqrt[3]{abc}}+\dfrac{1}{\sqrt[3]{abc}}\right)^3\)\(\ge\left(3+\dfrac{1}{\dfrac{1}{2}}+\dfrac{1}{\dfrac{1}{2}}\right)^3=343\)

Xảy ra khi \(a=b=c=\dfrac{1}{2}\)

27 tháng 10 2017

cứ cho là a+b+c <=3/2

đã >=0 đâu mà G với M

16 tháng 2 2019

bn vô câu hỏi tương tự có hết nhé

2 tháng 3 2019

Vì vai trò của a,b,c là như nhau, giả sử

\(a\ge c\ge b>0\)

Ta có

\(a+b-c< a\)

\(\Leftrightarrow b-c\le0\) ( đúng với gt )

\(\Rightarrow a+b-c< a\)

\(\Leftrightarrow\left(a+b-c\right)^2< a^2\)

\(\Leftrightarrow\dfrac{1}{\left(a+b-c\right)^2}\ge\dfrac{1}{a^2}\)

CMTT :

\(\dfrac{1}{\left(b+c-a\right)^2}\ge\dfrac{1}{b^2};\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{c^2}\)

Cộng vế với vế 3 BĐT trên , được

\(\dfrac{1}{\left(a+b-c\right)^2}+\dfrac{1}{\left(b+c-a\right)^2}+\dfrac{1}{\left(c+a-b\right)^2}\ge\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

11 tháng 10 2018

Áp dụng BĐT Cô-si cho các số dương ta có:

(2a+b+c)2 = \(\left[\left(a+b\right)+\left(a+c\right)\right]^2\) \(\ge\) 4(a+b)(a+c)

\(\Rightarrow\) \(\dfrac{1}{\left(2a+b+c\right)^2}\) \(\le\) \(\dfrac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự : \(\dfrac{1}{\left(2b+c+a\right)^2}\) \(\le\) \(\dfrac{1}{4\left(b+c\right)\left(b+a\right)}\)

\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\) \(\dfrac{1}{4\left(c+b\right)\left(c+a\right)}\)

Cộng theo vế 3 đẳng thức trên

\(\dfrac{1}{\left(2a+b+c\right)^2}\)+\(\dfrac{1}{\left(2b+c+a\right)^2}\)+\(\dfrac{1}{\left(2c+a+b\right)^2}\) \(\le\)\(\dfrac{1}{4}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(b+c\right)\left(b+a\right)}+\dfrac{1}{\left(c+b\right)\left(c+a\right)}\right)\)

=\(\dfrac{1}{4}\left(\dfrac{b+c+a+b+c+a}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\right)\)

=\(\dfrac{1}{2}\left(\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right)\)

Áp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

\(\Rightarrow\) P \(\le\) \(\dfrac{a+b+c}{16abc}\) = \(\dfrac{1}{16}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\) \(\le16\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\) = \(\dfrac{3}{16}\)

\(\Rightarrow\) Pmax = \(\dfrac{3}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\) a = b = c = 1

Vậy Pmax = \(\dfrac{3}{16}\) \(\Leftrightarrow\) a = b = c = 1

13 tháng 6 2019

Em mới tìm được Min thôi ạ, Max =\(2\sqrt{2}+4\)nhưng chưa biết cách giải , mọi người giúp với ạ

áp dụng bất đẳng thức AM-GM cho 3 số ta có:

\(a^3+b^3+1\ge3\sqrt[3]{a^3b^3.1}=3ab\)

\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}=\frac{\left(a^3+b^3+1\right)+3}{ab+1}\ge\frac{3ab+3}{ab+1}=3\)

Vậy giá trị nhỏ nhất của M=3 khi \(\hept{\begin{cases}a^2+b^2=2\\a^3=b^3=1\end{cases}\Rightarrow}a=b=1\)

13 tháng 6 2019

\(0\le a\le\sqrt{2}\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)

Tương tự và cộng lại: \(a^3+b^3\le\sqrt{2}\left(a^2+b^2\right)=2\sqrt{2}\)

\(\Rightarrow M\le\frac{2\sqrt{2}+4}{ab+1}\le\frac{2\sqrt{2}+4}{1}=2\sqrt{2}+4\) (do \(ab\ge0\Rightarrow ab+1\ge1\))

Dấu "=" khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)