TÌM GTNN CỦA A =\(X^2+Y^2+Z^2-6X-22Y+12Z+2185\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= X^2- 6X +9 + y^2 -22y + 121+ z^2+12z+ 36+2019
= (x-3)2+(y-11)2+(z+6)2+2019
Lại có (x-3)2+(y-11)2+(z+6)2\(\ge\)0
=> A\(\ge\)2019
Vậy Min A = 2019 <=> x= 3; y=11; z= -6
\(x^2+y^2+z^2-6x-22y+12z+166=0\)
\(\Leftrightarrow x^2+y^2+z^2-6x-22y+12z+121+9+36=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-22y+121\right)+\left(z^2+12z+36\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y-11\right)^2+\left(z+6\right)^2=0\)
\(\hept{\begin{cases}\left(x-3\right)^2\ge0\\\left(y-11\right)^2\ge0\\\left(z+6\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(y-11\right)^2=0\\\left(z+6\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=0\\y-11=0\\z+6=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=11\\z=-6\end{cases}}\)
\(M=2x^2+9y^2-6xy-6x-12y+2028\\ =3\left(x^2-2xy+y^2\right)-\left(x^2+6x+9\right)+6\left(y^2-2y+1\right)+2025\\ =\left(x-y\right)^2-\left(x-3\right)^2+6\left(y-1\right)^2+2025\ge2025\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=3\\y=1\end{matrix}\right.\) (vô lí) nên dấu \("="\) ko thể xảy ra
\(N=x^2-4xy+5y^2+10x-22y+28\\ =\left(x^2+4y^2+25-4xy-20y+10x\right)+\left(y^2-2y+1\right)+2\\=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-2y=5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
a) x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = ( x - 3 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = 3
=> GTNN của bthuc = 2 <=> x = 3
b) x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x
Dấu "=" xảy ra khi x = 10
=> GTNN của bthuc = 1 <=> x = 10
c) x2 - 4xy + 5y2 + 10x - 22y + 28
= ( x2 - 4xy + 4y2 + 10x - 20y + 25 ) + ( y2 - 2y + 1 ) + 2
= [ ( x2 - 4xy + 4y2 ) + ( 10x - 20y ) + 25 ] + ( y - 1 )2 + 2
= [ ( x - 2y )2 + 2( x - 2y ).5 + 52 ] + ( y - 1 )2 + 2
= ( x - 2y + 5 )2 + ( y - 1 )2 + 2 ≥ 2 ∀ x, y
Dấu "=" xảy ra khi x = -3 ; y = 1
=> GTNN của bthuc = 2 <=> x = -3 ; y = 1
biến đổi tương đương A = \((x^2-6x+9)+(y^2-22y+121)+(z^2+12z+36)\)\(+2019\)
=> A = \((x-3)^2+(y-11)^2+(z+6)^2+2019\ge2019\)
VẬY GTNN CỦA A LÀ 2019 ĐẠT ĐƯỢC TẠI x=3 , y=11,z=-6