K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Ta có :

A = 2018 x 2020 = 4076360

B = 2019 x 2019 = 4076361

=> A < B

11 tháng 6 2019

A= 2018 x 2020 =4076360

B =2019 x 2019 = 4076361

=>A < B

~Hok tốt~

16 tháng 12 2021

a: <

b: <

c: =

16 tháng 12 2021

\(a,17< 23\Rightarrow333^{17}< 333^{23}\\ b,2007< 2008\Rightarrow2007^{10}< 2008^{10}\\ c,\left(2008-2007\right)^{2009}=1^{2009}=1^{1999}=\left(1998-1997\right)^{1999}\)

a: Ta có: \(3^{2x+1}< 27\)

\(\Leftrightarrow2x+1< 3\)

\(\Leftrightarrow x< 1\)

hay x=0

21 tháng 9 2021

1. 

a. 32x + 1 < 27

<=> 32x + 1 < 33

<=> 2x + 1 < 3

<=> 2x < 2

<=> 2x : 2 < 2 : 2

<=> x < 1

12 tháng 10 2021

\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)

12 tháng 10 2021

C1: $\sqrt{28}=\sqrt{4.7}=2\sqrt 7$

Ta có: $3>2$

$\Leftrightarrow 3\sqrt 7>3\sqrt 7$ hay $3\sqrt 7>\sqrt{28}$

C2: $3\sqrt{7}=\sqrt{63}$

Ta có: $63>28$

$\Leftrightarrow\sqrt{63}>\sqrt{28}$ hay $3\sqrt 7>\sqrt{28}$

a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)

mà 17^19+1>17^18+1

nên A<B

b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)

\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)

2^2021-1<2^2022-1

=>1/2^2021-1>1/2^2022-1

=>-1/2^2021-1<-1/2^2022-1

=>C<D

12 tháng 3 2023

cho mình bài c với đc ko?mình ko bik làm😫😖

14 tháng 8 2023

\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)

Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)

b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)

Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)

14 tháng 8 2023

cứu

 

29 tháng 9 2023

\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)

Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)

\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)

Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)

#\(Toru\)

29 tháng 9 2023

a> \(3^{200}\) và \(2^{300}\)

Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

          \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì 9>8 nên \(9^{100}>8^{100}\)

\(\Rightarrow\)\(3^{200}>2^{300}\)

b> \(5^{40}\) và \(3^{50}\)

Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)

         \(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)

Vì 625 > 243 nên \(625^{10}>243^{10}\)

\(\Rightarrow\)\(5^{40}>3^{50}\)

20 tháng 9 2020

a) Ta có: \(B=2010\cdot2012\)

\(B=\left(2011-1\right)\cdot\left(2011+1\right)\)

\(B=2011^2+2011-2011-1\)

\(B=2011^2-1< 2011^2=A\)

Vậy A > B

b) Ta có: \(A=2018\cdot2020\)

\(A=\left(2019-1\right)\cdot\left(2019+1\right)\)

\(A=2019^2+2019-2019-1\)

\(A=2019^2-1< 2019^2=B\)

Vậy B > A

20 tháng 9 2020

a)

\(A=2011.2011=2011^2\)

\(B=2010.2012=\left(2011-1\right).\left(2011+1\right)=2011^2-1^2\)

\(\Rightarrow A>B\)(vì 2011^2>2011^2-1)

b)

\(A=2018.2020=\left(2019-1\right).\left(2019+1\right)=2019^2-1\)

\(B=2019.2019=2019^2\)

\(\Rightarrow A< B\)(vì 2019^2-1<2019^2