Giúp mình so sánh
A=2018.2020
B=2019.2019
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,17< 23\Rightarrow333^{17}< 333^{23}\\ b,2007< 2008\Rightarrow2007^{10}< 2008^{10}\\ c,\left(2008-2007\right)^{2009}=1^{2009}=1^{1999}=\left(1998-1997\right)^{1999}\)
a: Ta có: \(3^{2x+1}< 27\)
\(\Leftrightarrow2x+1< 3\)
\(\Leftrightarrow x< 1\)
hay x=0
\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
\(a) 3^{200}=(3^2)^{100}=9^{100}\\2^{300}=(2^3)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\) nên \(3^{200}>2^{300}\)
\(b) 5^{40}=(5^4)^{10}=625^{10}\\3^{50}=(3^5)^{10}=243^{10}\)
Vì \(625^{10}>243^{10}\) nên \(5^{40}>3^{50}\)
#\(Toru\)
a> \(3^{200}\) và \(2^{300}\)
Ta có:\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì 9>8 nên \(9^{100}>8^{100}\)
\(\Rightarrow\)\(3^{200}>2^{300}\)
b> \(5^{40}\) và \(3^{50}\)
Ta có:\(5^{40}=5^{4.10}=\left(5^4\right)^{10}=625^{10}\)
\(3^{50}=3^{5.10}=\left(3^5\right)^{10}=243^{10}\)
Vì 625 > 243 nên \(625^{10}>243^{10}\)
\(\Rightarrow\)\(5^{40}>3^{50}\)
a) Ta có: \(B=2010\cdot2012\)
\(B=\left(2011-1\right)\cdot\left(2011+1\right)\)
\(B=2011^2+2011-2011-1\)
\(B=2011^2-1< 2011^2=A\)
Vậy A > B
b) Ta có: \(A=2018\cdot2020\)
\(A=\left(2019-1\right)\cdot\left(2019+1\right)\)
\(A=2019^2+2019-2019-1\)
\(A=2019^2-1< 2019^2=B\)
Vậy B > A
a)
\(A=2011.2011=2011^2\)
\(B=2010.2012=\left(2011-1\right).\left(2011+1\right)=2011^2-1^2\)
\(\Rightarrow A>B\)(vì 2011^2>2011^2-1)
b)
\(A=2018.2020=\left(2019-1\right).\left(2019+1\right)=2019^2-1\)
\(B=2019.2019=2019^2\)
\(\Rightarrow A< B\)(vì 2019^2-1<2019^2
Ta có :
A = 2018 x 2020 = 4076360
B = 2019 x 2019 = 4076361
=> A < B
A= 2018 x 2020 =4076360
B =2019 x 2019 = 4076361
=>A < B
~Hok tốt~