Cho A \(=\)n\(^6\)+10n\(^4\)+n3+98n-6n5-26 và B\(=\)1+n3-n. Chứng minh với \(\forall\) n \(\in\) Z thì thương của phép chia A cho B là bội số của 6.
các bn làm giúp mk vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
b) 3 năm nữa
c)1
d)41
e)102; 201; 120, 210. có 2 số chia hết cho 5 là 120 và 210
g) 44
h) 4 số 0
b) hiệu số tuổi của mẹ và con là 27 (tuổi) và hiệu số tuổi của hai gnười luôn không đổi
khi tuổi mẹ gấp 4 lần tuổi
số tuổi mẹ chiếm 4 phần, tuổi con chiếm 1 phần
hiệu số phần bằng nhau là 4 - 1 = 3 ( phần )
tuổi mẹ khi đó là
27 : (4 - 1) * 4 = 36 ( tuổi
mẹ gấp 4 lần tuổi con sau 36 - 33 = 3 năm
vậy được rồi nha bạn
\(a)\) Công thức tính số hạng của một dãy số là : (Số cuối-số đầu ) chia khoảng cách rồi cộng thêm 1 .
Do đó : Số hạng của dãy số A là : \(\dfrac{\left(2n+1\right)-1}{2}+1=n+1\)
Số hạng của dãy số B là : \(\dfrac{2n-2}{2}+1=n-1+1=n\)
\(b)\) Ta có : Số hạng của dãy số A là : \(n+1\)
Do đó : tổng của A là : \(\dfrac{\left(2n+1+1\right).\left(n+1\right)}{2}=\dfrac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right)^2\)
Vì n thuộc N nên tổng của A là : một số chính phương .
\(c)\) Ta có : Số hạng của dãy số B là : n
Do đó : Tổng của dãy số B là : \(\dfrac{n.\left(2n+2\right)}{2}=\dfrac{2.n.\left(n+1\right)}{2}\)
\(=n.\left(n+1\right)\)
Ta thấy : n(n+1) là tích của 2 số tự nhiên liên tiếp nên để B là số chính phương thì khi và chỉ khi n hoặc n+1 bằng 0 .
Ta thấy chúng đều không thoả mãn .
vậy.............
Kiến thức cần nhớ về phép chia có dư:
+ Số chia lớn hơn số dư
+ Số bị chia = Số chia nhân thương cộng với số dư
+ Số dư lớn nhất kém số chia 1 đơn vị
+ Số bị chia bớt đi số dư thì phép chia trở thành phép chia hết
Giải
Tổng của số số chia và số bị chia là: 595 - 49 = 546
Gọi số chia là \(x\) (\(x\in\) N; \(x\) ≥ 50)
Thì khi đó số bị chia là: 6\(\times\) \(x\) + 49 = 6\(x\) + 49
Theo bài ra ta có: 6\(x\) + 49 + \(x\) = 546
7\(x\) = 546 - 49
7\(x\) = 497
\(x\) = 497 : 7
\(x\) = 71
Số bị chia là 71 \(\times\) 6 + 49 = 475
Kết luận: Số chia là 71; số bị chia là 475
Thử lại ta có: 71 + 475 + 49 = 595 (ok)
475 : 71 = 6 dư 49 (ok)
b, Gọi số chia là \(x\) ( \(x\in\) N*; \(x>13\)) Thì thương là:
\(\dfrac{200-13}{x}\)=\(\dfrac{187}{x}\)⇒\(x\)\(\in\)Ư(187) ={ 1; 11; 17;187} vì \(x\)> 13⇒ \(x\) = 17;
Số chia là 17; thương là: 187 : 17 = 11
Số chia là 187 thương là: 187 : 187 = 1
Kết luận: Số chia là 17; thương là 11 hoặc số chia là 187 thương là 1
b, Đề cho số dư là số lớn nhất có thể không em?
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
a.
Xét \(\Delta ABE\) và \(\Delta DBA\) có:
góc E = A = 90o
góc B chung
Do đó: tam giác ABE~DBA ( g.g)
b.
Ta có: tam giác ABD vuông tại A
=> BD2 = AB2 + AD2
=> BD2 = 42 + 32
=> BD2 = 25
=> BD = 5 ( cm)
ABCD là hình chữ nhật:
=> AB = CD = 4 cm
AD = BC = 3 cm
Xét \(\Delta BCD\) và \(\Delta BFC\) có:
góc C = F = 90o
góc B chung
Do đó: tam giác BCD~BFC
=> \(\dfrac{BC}{BD}=\dfrac{BF}{BC}\Rightarrow BF=\dfrac{BC^2}{BD}=\dfrac{3^2}{5}=1,8cm\)
Xét \(\Delta ADE\) và \(\Delta BDA\) có:
góc E = A = 90o
góc D chung
Do đó: tam giác ADE~BDA ( g.g)
=> \(\dfrac{AD}{DE}=\dfrac{BD}{DA}\Rightarrow DE=\dfrac{AD^2}{BD}=\dfrac{3^2}{5}=1,8cm\)
Ta có: DE + EF + BF = BD
=> 1,8 + EF + 1,8 = 5
=> EF = 5 - 1,8 - 1,8
=> EF = 1,4 ( cm)
Vậy \(EF=1,4cm\)
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6