Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
Xem nội dung đầy đủ tại:https://123doc.org//document/4209455-de-da-hsg-toan-8-huyen-tam-duong-2016-2017.htm
a.
Xét \(\Delta ABE\) và \(\Delta DBA\) có:
góc E = A = 90o
góc B chung
Do đó: tam giác ABE~DBA ( g.g)
b.
Ta có: tam giác ABD vuông tại A
=> BD2 = AB2 + AD2
=> BD2 = 42 + 32
=> BD2 = 25
=> BD = 5 ( cm)
ABCD là hình chữ nhật:
=> AB = CD = 4 cm
AD = BC = 3 cm
Xét \(\Delta BCD\) và \(\Delta BFC\) có:
góc C = F = 90o
góc B chung
Do đó: tam giác BCD~BFC
=> \(\dfrac{BC}{BD}=\dfrac{BF}{BC}\Rightarrow BF=\dfrac{BC^2}{BD}=\dfrac{3^2}{5}=1,8cm\)
Xét \(\Delta ADE\) và \(\Delta BDA\) có:
góc E = A = 90o
góc D chung
Do đó: tam giác ADE~BDA ( g.g)
=> \(\dfrac{AD}{DE}=\dfrac{BD}{DA}\Rightarrow DE=\dfrac{AD^2}{BD}=\dfrac{3^2}{5}=1,8cm\)
Ta có: DE + EF + BF = BD
=> 1,8 + EF + 1,8 = 5
=> EF = 5 - 1,8 - 1,8
=> EF = 1,4 ( cm)
Vậy \(EF=1,4cm\)
Thực hiện phép chia, ta được:Thương của A chia cho B là n3 – 6n2 + 11n – 6Ta có: 3 2 3 226 11 6 12 6 6( 1) .( 1) 6.(2 1)n n n n n n nn n n n n− + − = − + − −= − + + − −Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên tích đó vừa chia hết cho 2, vừa chia hết cho 3 suy ra tích đó chia hết cho 6Mặt khác 6(2n-n2-1) chia hết cho 6=> Th¬ng cña phÐp chia A cho B lµ béi sè cña 6
1. Ta có \(\left(b-a\right)\left(b+a\right)=p^2\)
Mà b+a>b-a ; p là số nguyên tố
=> \(\hept{\begin{cases}b+a=p^2\\b-a=1\end{cases}}\)
=> \(\hept{\begin{cases}b=\frac{p^2+1}{2}\\a=\frac{p^2-1}{2}\end{cases}}\)
Nhận xét :+Số chính phương chia 8 luôn dư 0 hoặc 1 hoặc 4
Mà p là số nguyên tố
=> \(p^2\)chia 8 dư 1
=> \(\frac{p^2-1}{2}⋮4\)=> \(a⋮4\)(1)
+Số chính phương chia 3 luôn dư 0 hoặc 1
Mà p là số nguyên tố lớn hơn 3
=> \(p^2\)chia 3 dư 1
=> \(\frac{p^2-1}{2}⋮3\)=> \(a⋮3\)(2)
Từ (1);(2)=> \(a⋮12\)
Ta có \(2\left(p+a+1\right)=2\left(p+\frac{p^2-1}{2}+1\right)=p^2+1+2p=\left(p+1\right)^2\)là số chính phương(ĐPCM)
+ \(2a^2+a=3b^2+b\)
\(\Rightarrow3a^2-3b^2+a-b=a^2\)
\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)
\(\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\) (*)
+ Gọi \(d=\left(a-b;3a+3b+1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a-b⋮d\\3a+3b+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-3b⋮d\\3a+3b+1⋮d\end{matrix}\right.\)
\(\Rightarrow3a+3b+1+3a-3b⋮d\)
\(\Rightarrow6a+1⋮d\) (1)
+ \(\left\{{}\begin{matrix}a-b⋮d\\3a+3b+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\)
\(\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\) (2)
+ Từ (1) và (2) \(\Rightarrow1⋮d\Rightarrow d=1\)
=> a - b và 3a + 3b + 1 là 2 số nguyên tố cùng nhau (**)
+ Từ (*) và (**) => đpcm
P/s : nếu tích 2 số nguyên tố cùng nhau là số cp thì mỗi số đều là số chính phương