tìm x biết:
2021-x+2021x.(1-2021x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2021 - x + 2021(x - 2020x) = 0
<=> 2021 - x + 2021 - 4082420 = 0
<=> -x - 4082420 = 0
<=> x = -4082420
Ta có: \(\left|x+\frac{1}{2021}\right|\ge0\) ; \(\left|x+\frac{2}{2021}\right|\ge0\) ; ... ; \(\left|x+\frac{2020}{2021}\right|\ge0\) \(\left(\forall x\right)\)
\(\Rightarrow\left|x+\frac{1}{2021}\right|+\left|x+\frac{2}{2021}\right|+...+\left|x+\frac{2020}{2021}\right|\ge0\left(\forall x\right)\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
Từ đó ta được: \(x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Leftrightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Leftrightarrow x=\frac{\left(2020+1\right)\left[\left(2020-1\right)\div1+1\right]}{2021}\)
\(\Leftrightarrow x=\frac{2021\cdot2020}{2021}=2020\)
Vậy x = 2020
\(\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|=2021x\)
Ta có:\(\left|\frac{x+1}{2021}\right|\ge0;\left|\frac{x+2}{2021}\right|\ge0;....;\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow\left|\frac{x+1}{2021}\right|+\left|\frac{x+2}{2021}\right|+...+\left|\frac{x+2020}{2021}\right|\ge0\forall x\)
\(\Rightarrow2021x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\frac{x+1}{2021}+\frac{x+2}{2021}+...+\frac{x+2020}{2021}=2021x\)
\(\Rightarrow x+\frac{1}{2021}+x+\frac{2}{2021}+...+x+\frac{2020}{2021}=2021x\)
\(\Rightarrow2020x+\frac{1+2+...+2020}{2021}=2021x\)
\(\Rightarrow x=2020\)
Ta có x = 2020
=> x + 1 = 2021
A = x2021 - 2021x2020 + .... + 2021x - 2021
= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)
= x2021 - x2021 - x2020 + .... + x2 + x - x + 1
= 1
Vậy A = 1
Ta có : \(x=2020\Rightarrow x+1=2021\)
\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)
= x2021 - x2021 - x2020 + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x2 + x - 2021 = x - 2021
mà x = 2020 hay 2020 - 2021 = -1
Vậy với x = 2020 thì A = -1
x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0
Lời giải:
$x(x-1)+2021-2021x=0$
$\Leftrightarrow x(x-1)-(2021x-2021)=0$
$\Leftrightarrow x(x-1)-2021(x-1)=0$
$\Leftrightarrow (x-1)(x-2021)=0$
$\Leftrightarrow x-1=0$ hoặc $x-2021=0$
$\Leftrightarrow x=1$ hoặc $x=2021$
\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)
a) Có x = 2020 => x + 1 = 2021. Thay 2021 = x + 1 vào A
\(A=x^6-\left(x+1\right)^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Có x = -19 => x - 1 = -20 => - ( x - 1 ) = 20. Thay 20 = - ( x - 1) vào B
\(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-\left(x-1\right)x^7-...-\left(x-1\right)x^2-\left(x-1\right)x-x+1\)
\(B=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2+x-x+1\)
\(B=1\)
Chúc bạn học tốt!!!