K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2019

A B C D O 1 2 3 4

Có : \(AB< OA+OB;BC< OB+OC;CD< OC+OD;DA< OD+OA\)

\(P_{ABCD}=2p=AB+BC+CD+DA< 2\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(p< OA+OB+OC+OD\)

Lại có : \(OA< AB-OB;OB< BC-OC;OC< CD-OD;OD< DA-OA\)

Cộng vế theo vế từng bđt trên ta được : 

\(OA+OB+OC+OD< AB+BC+CD+DA-\left(OA+OB+OC+OD\right)\)

\(\Leftrightarrow\)\(2\left(OA+OB+OC+OD\right)< AB+BC+CD+DA\) (*) 

Có tiếp -,- : 

\(OA< AB+OB;OA< DA+OD\)\(\Rightarrow\)\(2OA< AB+DA+OB+OD\)

\(OB< AB+OA;OB< BC+OC\)\(\Rightarrow\)\(2OB< AB+BC+OA+OC\)

\(OC< BC+OB;OC< CD+OD\)\(\Rightarrow\)\(2OC< BC+CD+OB+OD\)

\(OD< CD+OC;OD< DA+OA\)\(\Rightarrow\)\(2OD< CD+DA+OC+OA\)

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 2\left(AB+BC+CD+DA\right)+2\left(OA+OB+OC+OD\right)\)

\(< 2\left(AB+BC+CD+DA\right)+\left(AB+BC+CD+DA\right)\) ( kết hợp với (*) ) 

\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 3\left(AB+BC+CD+DA\right)\)

\(\Leftrightarrow\)\(OA+OB+OC+OD< 3.\frac{AB+BC+CD+DA}{2}=3.\frac{2p}{2}=3p\)

Vậy \(p< OA+OB+OC+OD< 3p\)

21 tháng 6 2017

Mọi người giúp với !!

14 tháng 8 2017

 a, Chắc bạn vẫn còn nhớ phương pháp chứng mình 1 tứ giác là hình chữ nhật bằng cách chứng minh 2 đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Xét thấy tứ giác ABDC có tính chất như vậy nên nó là hình chữ nhật. 
b,Xét tam giác AHB và tam giác BMA có góc AHb = góc BMA = 90 độ; cạnh AB chung; góc A = góc B (2 góc đáy của tam giác ABO cân tại O). => 2 tam giác này bằng nhau (cạnh huyền, góc nhọn) => BH = AM (cặp cạnh tương ứng). Xét tam giác ABO có AM/AO = BH/BO (do BH = AM và AO = BO). 
=> MH song song với AB (định lý Ta - lét đảo). Mà AB vuông góc với AC nên suy ra HM vuông góc với AC. 
c, Xét tam giác BHA và tam giác DNC có góc H = góc N = 90 độ; AB = CD và góc ABH = góc CDN => 2 tam giác này bằng nhau => BH = ND, tương tự cũng suy ra HN song song với BD (giống phần b). Do MH song song với AB; HN song song với BD => góc MHN = góc ABD = 90 độ (2 góc có cặp cạnh tương ứng song song thì bằng nhau nếu cùng nhọn, cùng tù hoặc có 1 góc vuông trong 2 góc ) => tam giác MHN vuông tại H => tâm đường tròn ngoại tiếp chình là trung điểm cạnh huyền và O chính là nó (hãy tự suy ra dựa vào những phần trên). 
d, Gọi I là tâm đường tròn nội tiếp tam giác ABC vuông tại A, ta có tính chất sau r (bán kính đường tròn nội tiếp) = (AB + AC - BC)/2. Ta sẽ đi chứng minh điều này: Xét tam giác ABC vuông tại A có I là tâm đường tròn nội tiếp. Kẻ IH vuông góc với AB; IK vuông góc với AC và IL vuông góc với BC. => Ta chứng minh được r = AH = AK. BH = BL và CK = LC (hãy tự chứng minh bằng cách nôi A với I; B với I và C với I) => AH + AK = (AB - HB + AC - KC) = (AB + AC - BH - CK) = (AB + AC - BL - LC) = (AB + AC - BC) <=> 2r = (AB + AC - BC) => r = AB + AC - BC)/2 mà R = BC/2 (tính chất trong tam giác vuông) => R + r = AB + AC - BC)/2 + BC/2 = (AB + AC)/2. Mà AB + AC >hoặc= 2 nhân căn bậc 2 (AB.AC) => (AB + AC)/2 >hoặc= căn bậc 2 của(AB.AC) (đpcm)

Xét ΔABO vuông tại O và ΔDCO vuông tại O có

góc BAO=góc CDO

=>ΔABO đồng dạng với ΔDCO

Xét ΔBCO vuông tại O và ΔADO vuông tại O có

góc OBC=góc OAD

=>ΔBCO đồng dạng với ΔADO

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

4: Sửa đề: DA=DC

a: BA=BC

DA=DC

=>BD là trung trực của AC

b: góc A+góc C=360-120-80=160 độ

Xét ΔBAD và ΔBCD có

BA=BD

AD=CD

BD chung

=>ΔBAD=ΔBCD

=>góc BAD=góc BCD=160/2=80 độ

 

3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ

=>Trái với  định lí tổng 4 góc trong một tứ giác

Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ

=>Trái với định lí tổng 4 góc trong một tứ giác

Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được

19 tháng 5 2020

Ta có: IJ−→=IA−→+AB−→−+BJ−→IJ→=IA→+AB→+BJ→
IJ−→=ID−→+DC−→−+CJ−→IJ→=ID→+DC→+CJ→
⇒IJ−→=12(AB−→−+DC−→−)⇒IJ→=12(AB→+DC→)
Xét:
HK−→−.IJ→=12(OK−→−−OH−→−).(AB−→−+DC−→−)=12(OK−→−.AB−→−+OK−→−.DC−→−−OH−→−.AB−→−−OH−→−.DC−→−)=12(OK−→−.AB−→−−OH−→−.DC−→−)=12[(OC−→−+CK−→−).(OB−→−−OA−→−)−(OA−→−+AH−→−).(OC−→−−OD−→−)]=12[(OB−→−−OA−→−−AH−→−).OC−→−−(CK−→−+OC−→−−OD−→−).OA−→−]=12[(HA−→−+AO−→−+OB−→−).OC−→−−(DO−→−+OC−→−+CK−→−).OA−→−]=12(HB−→−.OC−→−−DK−→−.OA−→−)=0⇔HK⊥IJ