K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2019

a) Xét (O) có
(O) ngoại tiếp tam giác AKB
AB là đường kính (gt)
=> tam giác AKB vuông tại K => góc AKB = 90 độ
Xét tứ giác AKNH có
Góc AKB= 90 độ (cmt)
Góc NHA = 90 độ ( Do CH vuông góc với AB)
=> Góc AKB + Góc NHA = 90 độ + 90 độ = 180 độ
Mà góc AKB và góc NHA là 2 góc đối nhau
=> Tứ giác AKNH nội tiếp
Còn tứ giác KIAM thì mình không thấy đc điểm I
b) Xét tam giác AMB vuông tại A ( Do MA là tiếp tuyến tại A của (O)), đường cao AK( do góc AKB=90 độ)
=> AM^2=MK.MB
c) Gọi giao điểm của MO và AC là E
Xét (O) có
MA,MC lần lượt là tiếp tuyến tại A,C của (O) cắt nhau tại M (gt)
=> OM vuông góc với AC tại E
=> góc MEA = 90 độ
Xét tứ giác MKEA có
Góc MKA = 90 độ (cmt)
Góc MEA=90 độ (cmt)
Mà K,E là 2 đỉnh liền kề cùng nhìn đoạn MA
=> tứ giác MKEA nội tiếp
=> góc EMK = góc KAE ( 2 góc nội tiếp cùng chắn cung KE)

=> góc OMB = góc KAC (Dcpcm)

1: góc AKP+góc AHP=180 độ

=>AKPH nội tiếp

2: góc KAC=1/2*sđ cung KC

góc OMB=góc CBK(MH//CB)

=>góc OMB=góc KAC

24 tháng 5 2016

cho đường tròn tâm O đường kính AB. Trên tiếp tuyến của đường tròn (O) tại A lấy điểm M (M khác A). Từ M vẽ tiếp tuyến thứ hai MC với (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H thuộc AB), MB cắt (O) tại điểm thứ hai là K cắt CH tại N. CMR :
a) AKNH là tứ giác nt
b)  AM.AM = MK.MB
c) Góc KAC bằng góc OMB

Chịu @- @

27 tháng 2 2019

 xét tứ giác AK NH có :

góc AKB bằng 90 độ g(óc nội tiếp chắn nửa đường tròn)

Góc AHN bằng 90° (AH vuông góc với hc)

Suy  ra góc AKB + góc AHN bằng 180 độ

 tự giác AHKN  nt 

Xét tam giác ABC có AK vuông góc với MB  suy ra MA. MA=MK. MB

Gọi giao điểm của AC và OM là D phẩy giao điểm của m b với ac là i.

Xét tam giác AiK và tam giác MiD có 

 góc i là góc chung

Góc AKi=góc mdi(=90 độ) 

Suy ra tam giác aik đồng dạng với tam giác min suy ra góc kac bằng goc 0mb

 mình mới giải bài tập nhưng có một số ký hiệu không ghi được bằng bàn phím nên các bạn thông cảm

19 tháng 12 2021

Cho nửa đường tròn đấy ạ . Mn giúp mk với , mk cảm ơn trước ạ 😊😊

18 tháng 7 2015

d, kéo dài BC cắt AM tại Q

\(\Delta ACQ\) vuông tại C có MA= MC (2 tiếp tuyến cắt nhau)

góc MAC = góc MCA

--> MAC + AQB=MCA+MCQ=90

-->AQB=MCQ-->MC=MQ--> MA=MQ

\(\Delta MAB\sim\Delta NHB\Rightarrow\frac{NH}{MA}=\frac{NB}{MB}\)

\(\Delta QMB\sim\Delta CNB\Rightarrow\frac{CN}{QM}=\frac{BN}{BM}\)

------>>>>........

24 tháng 5 2021
Câu d) nếu dùng ta lét thì làm thế nào ạ??
23 tháng 5 2019

Tớ không vẽ hình được bạn tự vẽ nhé

a, Vì K thuộc đường tròn đường kính AB

=> AKB=90

Mà CHA=90

=> tứ giác AKNH nội tiếp

Vậy tứ giác AKNH nội tiếp

b,Vì 2 tiếp tuyến cắt nhau tại M 

nên \(OM\perp AC\)

=>\(OM//CB\)

=> tam giác AMO đồng dạng tam giác HCB

=> ĐPCM

c, Tứ giác AMKI nội tiếp do AIM=AKM=90

KIC=AMK

MÀ AMK=KNC do AM song song CH

=> KIC=KNC

=> tứ giác KINC nội tiếp 

=>KNI=KCI

Mà  KCI=KBA

=> KNI=KBA

=> IN song song AB

Vậy IN song song AB

Mình không viết kí hiệu góc nên bạn thông cảm

18 tháng 6 2021

c) Vì \(\left\{{}\begin{matrix}AM\bot AB\\CN\bot AB\end{matrix}\right.\Rightarrow\)\(CN\parallel AM\)

AIQM nội tiếp \(\Rightarrow\angle QIC=\angle QMA=\angle AMB=\angle CNM\) \((CN\parallel AM)\)

\(\Rightarrow CQIN\) nội tiếp \(\Rightarrow\angle CIN=\angle CQN=\angle CQB=\angle CAB\)

\(\Rightarrow IN \parallel AB\) mà I là trung điểm AC \(\Rightarrow\) N là trung điểm CH

\(\Rightarrow CN=NH\)undefined

a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường  tròn) ⇒ˆADM=900⇒ADM^=900 (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC

⇒ˆAEM=900⇒AEM^=900 (2). 

Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.

b)  Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)

Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).

Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^

c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).

Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).

Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.

5 tháng 3 2023

Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.

Bước 1: Chứng minh AD/AC + AM/AN = 3.

Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:

 

$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$

Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$

Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.

Thay vào phương trình trên, ta được:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$

Tương đương với:

 

$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$

Từ đó suy ra:

 

$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$

Do đó:

 

$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)