Cho a, b, c là các số dương thỏa mãn a + b + c = \(\frac{1}{abc}\). Tìm min P = (a+b)(a+c).
Mọi người giúp mình nha. Mình giải đến nửa rồi bị bí :>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bđt cô si ta có : \(x+y\ge2\sqrt{xy}\) <=> \(1\ge2\sqrt{xy}\)
=> \(\sqrt{xy}\le\frac{1}{2}\) <=> \(\sqrt{\frac{1}{xy}}\ge2\)
Theo bđt cô si : \(P=\frac{a^2}{x}+\frac{b^2}{y}\ge2\sqrt{\frac{a^2b^2}{xy}}=2ab\sqrt{\frac{1}{xy}}=2ab.2=4ab\)
Vậy giá trị nhỏ nhất của P=4ab khi x=y=1/2
\(\Leftrightarrow M=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+â\right)}+\frac{ab}{c^2\left(a+b\right)}\)
áp dụng bđt cauchy ta có:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge\frac{1}{a}\);\(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\);\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)
\(\Rightarrow M\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{8abc}}=\frac{3}{2}\)
*** $a,b,c>0$ thôi chứ không lớn hơn $1$ bạn nhé. $a,b,c>1$ thì $abc>1$ mất rồi.
-----------------------
Vì $a, b, c>0$ thỏa mãn $abc=1$ nên tồn tại $x,y,z>0$ sao cho:
$(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$
Khi đó, áp dụng BĐT Cauchy_Schwarz:
$P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}$
$\geq \frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{(x+y+z)^2}{(x+y+z)^2}=1$
Vậy $P_{\min}=1$ khi $x=y=z\Leftrightarrow a=b=c=1$
Từ giả thiết:
\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)
\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)
\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)
Đặt \(\dfrac{a}{b+c}=x\ge1\)
\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)
\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)
\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)
Ta co:
\(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{a^2+b^2+c^2}+\frac{2}{abc}\)
Ta lai co:
\(a+b+c=1\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{abc}\)
\(\Rightarrow M=\frac{9}{\Sigma_{cyc}a^2}+\Sigma_{cyc}\frac{2}{ab}\ge\frac{9}{\Sigma_{cyc}a^2}+\frac{18}{\Sigma_{cyc}ab}\left(1\right)\)
\(VT_{\left(1\right)}=\frac{9}{\Sigma_{cyc}a^2}+\frac{1}{\Sigma_{cyc}ab}+\frac{1}{\Sigma_{cyc}ab}+\frac{16}{\Sigma_{cyc}ab}\ge\frac{\left(3+1+1\right)^2}{\Sigma_{cyc}a^2+2\Sigma_{cyc}ab}+\frac{16}{\frac{\left(\Sigma_{cyc}a\right)^2}{3}}=\text{ }\frac{25}{\left(\Sigma_{cyc}a\right)^2}+48=\text{ }73\)
Dau '=' xay ra khi \(\text{ }a=b=c=\frac{1}{3}\)
@my-friend
\(M\ge\frac{9}{a^2+b^2+c^2}+\frac{36}{2\left(ab+bc+ca\right)}\ge\frac{\left(3+6\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=81\)
Dấu "=" xảy ra ra khi \(\hept{\begin{cases}\frac{3}{a^2+b^2+c^2}=\frac{6}{2\left(ab+bc+ca\right)}\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)
bạn khá thông minh
nhưg sorry mình k thể k cho bb đc nha
Ta có \(\frac{1}{abc}=a+b+c\)
<=> \(a\left(a+b+c\right)=\frac{1}{bc}\)
\(P=\left(a+b\right)\left(a+c\right)\)
\(=a\left(a+b+c\right)+bc\)
\(=\frac{1}{bc}+bc\ge2\)
Dấu bằng xảy ra khi \(bc=1\)và a thỏa mãn \(a+b+\frac{1}{b}=\frac{1}{a}\)