Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow M=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+â\right)}+\frac{ab}{c^2\left(a+b\right)}\)
áp dụng bđt cauchy ta có:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge\frac{1}{a}\);\(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\);\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)
\(\Rightarrow M\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{8abc}}=\frac{3}{2}\)
*** $a,b,c>0$ thôi chứ không lớn hơn $1$ bạn nhé. $a,b,c>1$ thì $abc>1$ mất rồi.
-----------------------
Vì $a, b, c>0$ thỏa mãn $abc=1$ nên tồn tại $x,y,z>0$ sao cho:
$(a,b,c)=(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy})$
Khi đó, áp dụng BĐT Cauchy_Schwarz:
$P=\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}$
$\geq \frac{(x+y+z)^2}{x^2+2yz+y^2+2xz+z^2+2xy}=\frac{(x+y+z)^2}{(x+y+z)^2}=1$
Vậy $P_{\min}=1$ khi $x=y=z\Leftrightarrow a=b=c=1$
Ta co:
\(M=\frac{9}{1-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}+\frac{2}{abc}=\frac{9}{a^2+b^2+c^2}+\frac{2}{abc}\)
Ta lai co:
\(a+b+c=1\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{1}{abc}\)
\(\Rightarrow M=\frac{9}{\Sigma_{cyc}a^2}+\Sigma_{cyc}\frac{2}{ab}\ge\frac{9}{\Sigma_{cyc}a^2}+\frac{18}{\Sigma_{cyc}ab}\left(1\right)\)
\(VT_{\left(1\right)}=\frac{9}{\Sigma_{cyc}a^2}+\frac{1}{\Sigma_{cyc}ab}+\frac{1}{\Sigma_{cyc}ab}+\frac{16}{\Sigma_{cyc}ab}\ge\frac{\left(3+1+1\right)^2}{\Sigma_{cyc}a^2+2\Sigma_{cyc}ab}+\frac{16}{\frac{\left(\Sigma_{cyc}a\right)^2}{3}}=\text{ }\frac{25}{\left(\Sigma_{cyc}a\right)^2}+48=\text{ }73\)
Dau '=' xay ra khi \(\text{ }a=b=c=\frac{1}{3}\)
@my-friend
\(M\ge\frac{9}{a^2+b^2+c^2}+\frac{36}{2\left(ab+bc+ca\right)}\ge\frac{\left(3+6\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=81\)
Dấu "=" xảy ra ra khi \(\hept{\begin{cases}\frac{3}{a^2+b^2+c^2}=\frac{6}{2\left(ab+bc+ca\right)}\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)
bạn khá thông minh
nhưg sorry mình k thể k cho bb đc nha
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
Ta có \(\frac{1}{abc}=a+b+c\)
<=> \(a\left(a+b+c\right)=\frac{1}{bc}\)
\(P=\left(a+b\right)\left(a+c\right)\)
\(=a\left(a+b+c\right)+bc\)
\(=\frac{1}{bc}+bc\ge2\)
Dấu bằng xảy ra khi \(bc=1\)và a thỏa mãn \(a+b+\frac{1}{b}=\frac{1}{a}\)