cho hình thang abcd đáy nhỏ ab đáy lớn cd . hai đường chéo ac và bd cắt nhau tại o . biết diện tích hình tam giác aod là 4,5 cm2 ; diên tích hình tam giác icd là 0.75 cm2 . ad keo dai cat cb keo dai tai k. tinh s kab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tu ve hinh nhe !!!
Một cách giải
Hình thang ABCD cho ta SAID=SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 tam giác CIB và CID ta có IB/ID = n/98
Suy ra: 24,5/n = n/98
n x n = 98 x 24,5 = 2401
Vậy n= 49
SABCD = 24,5 + 98 + 49x2 = 220,5 (cm2)
Bài giải
Hình thang ABCD cho ta SAID=SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 tam giác CIB và CID ta có IB/ID = n/98
Suy ra: 24,5/n = n/98
n x n = 98 x 24,5 = 2401
Vậy n= 49
SABCD = 24,5 + 98 + 49x2 = 220,5 (cm2)
ĐS: 220,5 cm2
Do 2 tam giác ABI và BIC có chung BI nên 2 đường cao kẻ từ A và C xuống BI có tỉ lệ với diện tích: S_ABI/S_BIC = 13,6/20,4 = 2/3
=> S_ADB = 2/3 S_BDC => S_ABC = 2/3 S_ADC
Mà S_ABC = S_ABI + S_BIC = 13,6 + 20,4 = 34 (cm2)
S_ADC = 34 : 2 x 3 = 51 (cm2)
S_ABCD = S_ABC + S_ADC = 34 + 51 = 85 (cm2)
Ai tích mình mình tích lại cho
Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{9}\) và OA/OC=AB/CD=1/3
=>\(S_{OCD}=54\left(cm^2\right)\) và \(S_{BOC}=3\cdot S_{BOA}=3\cdot6=18\left(cm^2\right)\)
=>\(S_{AOD}=18\left(cm^2\right)\)
\(S_{ABCD}=18+18+54+6=60+36=96\left(cm^2\right)\)