cho hpt\(\left\{{}\begin{matrix}x+2y=m\\2x-y=m+1\end{matrix}\right.\)
tìm m để hpt có nghiệm (x;y) sao cho x,y là độ dài các cạnh góc vuông có độ dài cạnh huyền bằng \(\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)
Để \(x^2+y^2=10\)
\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)
\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)
\(\Leftrightarrow26m^2+60m-54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2y\right)+y=5m-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+4y+y-5m=-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y-3m=-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-1}{5}\\x=m+2\cdot\dfrac{3m-1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{5}+\dfrac{6m-2}{5}=\dfrac{11m-2}{5}\\y=\dfrac{3m-1}{5}\end{matrix}\right.\)
Để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\) thì \(\left(\dfrac{11m-2}{5}\right)^2-2\cdot\left(\dfrac{3m-1}{5}\right)^2=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-2\cdot\dfrac{9m^2-6m+1}{25}=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-\dfrac{18m^2-12m+2}{25}=-2\)
\(\Leftrightarrow\dfrac{103m^2-32m+2}{25}=\dfrac{-50}{25}\)
\(\Leftrightarrow103m^2-32m+2+50=0\)
\(\Leftrightarrow103m^2-32m+52=0\)
\(\Delta=\left(-32\right)^2-4\cdot103\cdot52=-20400\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\)
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6m+12\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=3-m\\5x=5m+15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
\(A=\left(m+3\right)^2+m^2=2m^2+6m+9=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\)
Dấu "=" xảy ra khi \(m+\dfrac{3}{2}=0\Rightarrow m=-\dfrac{3}{2}\)
a. Bạn tự giải
b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)
\(\Leftrightarrow m^2-4m-3=0\)
\(\Leftrightarrow...\)
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
=>3x+2y=4 và 4x-2y=2m
=>7x=2m+4 và 2x-y=m
=>x=2/7m+4/7 và y=2x-m=4/7m+8/7-m=-3/7m+8/7
x<1; y<1
=>2/7m+4/7<1 và -3/7m+8/7<1
=>2/7m<3/7 và -3/7m<-1/7
=>m<3/2 và m>1/3
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=m\\4x-2y=2m+2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3m+2}{5}\\y=\frac{m-1}{5}\end{matrix}\right.\)
Để x; y là độ dài cạnh tam giác \(\Rightarrow\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Rightarrow m>1\)
Áp dụng định lý Pitago ta có:
\(x^2+y^2=5\Leftrightarrow\left(\frac{3m+2}{5}\right)^2+\left(\frac{m-1}{5}\right)^2=5\)
\(\Leftrightarrow10m^2+10m-120=0\) \(\Rightarrow\left[{}\begin{matrix}m=3\\m=-4< 1\left(l\right)\end{matrix}\right.\)