CMR:Đa thức Q(x)=x2 -6x+2019 không có nghiệm
CÁC BẠN GIÚP MÌNH VS NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x3+6x2+9x+7=0
<=>4x3+2x2+7x+4x2+2x+7=0
<=>x(4x2+2x+7)+(4x2+2x+7)=0
<=>(x+1)(4x2+2x+7)=0
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\4x^2+2x+7=0\left(2\right)\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\left(tm\right)\\\left(2\right)\Leftrightarrow4\left(x+\frac{1}{4}\right)^2+\frac{27}{4}>0\end{array}\right.\)
<=>(2) vô nghiệm
Vậy đa thức có 1 nghiệm duy nhất là x=-1
|x-2| là một số nguyên dương nên |x-2| > 0. với mọi x
ta có : (x-1)2lớn hơm hoặc bằng 0. với mọi x
suy ra (x-2)2+|x-2| luôn lớn hơn 0. với mọi x
suy ra đa thức trên k có nghiệm
đơn giản thôi, muốn cm nó ko có nghiệm thì phải chứng minh nó khác 0
Có: (x-1)^2+ /x-2/ =0 .Vvì (x-1)^2 >= 0; /x-2/ >= 0 => (x-1)^2 = 0; /x-2/= 0 thì tổng mới =0.
(x-1)^2 = 0 => x=1 (1)
/x-2/=0=> x=2 (2)
Từ (1); (2) => vô lí.
Vậy ko tìm đc nghiệm
nếu là toán 7 thì làm thế này:
\(x^2+6x+196=0\\ x^2+6x=0-196=-196\\ x^2+x=-196:6=?\)
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
Với x=0, ta có x.f(x+1)=(x+2).f(0)=0
=>(0+2).f(0)=0
2.f(0)=0
=>f(0)=0
Với x=-2, ta có
-2.f(-2+1)=(-2+2).f(-2)
=>-2.f(-1)=0.f(-2)
=>-2.f(-1)=0
=>f(-1)=0
Vậy đa thức f(x) có ít nhất 2 nghiệm
Em mới học lớp 5 thôi ạ cho nên em chịu vậy nên em chỉ biết chúc chị học giỏi thôi
a) Nghiệm bằng 1 nha: 1^2016-1^2014=1-1=0
b)Không có nghiệm âm còn vì sao thì đợi lhi bạn k đug cho mk xog thì mk giải thick cho nha!
x2016-x2014=0
x2014*(x2-1)=0
TH1:
x2014=0
x=0
TH2
x2-1=0
x2=1
x=1
k mình nha
Ta có: \(Q\left(x\right)=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge2010\forall x\)
Vậy đa thức Q(x) vô nghiệm.
\(Q\left(x\right)=\left(x^2-2x.3+3^2\right)+2019-9=0\)
\(Q\left(x\right)=\left(x+3\right)^2+2010=0\)
Vì \(Q\left(x\right)=\left(x+3\right)^2\ge0\forall x\)
\(Q\left(x\right)\ge2010>0\)
Vậy...