Cho tam giác ABC.M là trung điểm của AB,N là điểm nằm giữa M và B.
a. Biết ABC=85,ACM=50,BCN=20.Tính BCM và MCN
b. Biết AN=a.BN=b.Tính MN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔACM và ΔBMN có
AM=BM(M là trung điểm của AB)
\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)
CM=MN(gt)
Do đó: ΔAMC=ΔBMN(c-g-c)
b) Ta có: ΔAMC=ΔBMN(cmt)
nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)
mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)
nên \(\widehat{NBM}=90^0\)
⇒\(\widehat{NBA}=90^0\)
hay NB⊥AB(đpcm)
c) Xét ΔAMN và ΔBMC có
MA=MB(M là trung điểm của AB)
\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)
MN=MC(gt)
Do đó: ΔAMN=ΔBMC(c-g-c)
⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)
mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong
nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
a) Xét ΔAMB và ΔNMC có
MA=MN(gt)
\(\widehat{AMB}=\widehat{NMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔNMC(c-g-c)
b) Ta có: ΔAMB=ΔNMC(cmt)
nên \(\widehat{ABM}=\widehat{NCM}\)(hai góc tương ứng)
hay \(\widehat{ABC}=\widehat{BCN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//NC(Dấu hiệu nhận biết hai đường thẳng song song)
mà CD⊥AB(gt)
nên CD⊥CN
hay \(\widehat{DCN}=90^0\)
c) Xét ΔABH vuông tại H và ΔIBH vuông tại H có
BH chung
HA=HI(gt)
Do đó: ΔABH=ΔIBH(hai cạnh góc vuông)
Suy ra: AB=IB(hai cạnh tương ứng)
mà AB=CN(ΔAMB=ΔNMC)
nên IB=CN(đpcm)