K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

Đặt \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\x+z=c\end{matrix}\right.\Rightarrow a+b+c=2\)

\(bdt\Leftrightarrow a+b\ge4abc\)

Ta có: \(4VT=4\left(a+b\right)=\left(a+b+c\right)^2\left(a+b\right)\ge4c\left(a+b\right)^2\ge16abc=4VP\)

Vậy bđt đc cm

15 tháng 2 2020

\(\text{Giả sử không có số nào nhỏ hơn 2}\Rightarrow\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\left(\text{vẫn đúng }\right)\)

26 tháng 8 2015

Áp dụng bất đẳng thức quen thuộc \(4xy\le\left(x+y\right)^2\), cho ta

\(4\left(1-x\right)\left(1-y\right)\left(1-z\right)=4\left(1-x\right)\left(1-z\right)\cdot\left(1-y\right)\)

\(\le\left(1-x+1-z\right)^2\cdot\left(1-y\right)=\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y^2\right)\)

\(\le1+y=x+2y+z.\)
 

22 tháng 6 2016

đề lại thiếu rồi bạn ơi Cm cái j

23 tháng 6 2016

lớn hơn hoặc bằng ba căn ba nhé bạn. sorry nha, minh quên mất

21 tháng 3 2021

\(A=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{4}{4}=1\)

26 tháng 8 2015

BĐT đã cho <=> 1 + y \(\ge\) 4.(1 - x).(1 - y).(1 - z)

Áp dụng BĐT :  4ab \(\le\) (a + b)ta có: 4.(1 - x)(1 - z) \(\le\) (1 - x + 1 - z)2 = (1 + y)2

=> 4.(1 - x)(1 - y)(1 - z) \(\le\) (1 + y)2.(1 - y) = (1 + y).(1 -y2\(\le\) (1 + y) .1 = 1+ y => đpcm

Dấu "=" xảy ra khi 1 - y= 1 và x = z => y = 0 ; x = z = 1/2