Cho a > 0, b > 0, c > 0 và a + b + c = 3. Tìm GTNN của A = 1/a + 1/b + 1/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=9\)
\(\Rightarrow3.P\ge9\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(P=\dfrac{a+3}{a+1}+\dfrac{b+3}{b+1}+\dfrac{c+3}{c+1}\)
\(P=3+2.\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
\(P\ge3+2.\dfrac{9}{a+b+c+3}=6\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\).
Vậy \(min_P=6\), xảy ra khi \(a=b=c=1\)
Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).
\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)
Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).
\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)
\(P_{min}=1\) khi \(a=b=c=1\)
\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)
Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)
\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)
\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)
\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
Áp dụng bdtd quen thuộc :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{3}=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Chứng minh bđt nha ( quên mất )
Áp dụng bđt Cauchy :
\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}}\)
Nhân từng vế của 2 bđt ta được đpcm
Dấu "=" khi \(a=b=c\)
\(A=\left(a+\frac{1}{a}-2\right)+\left(b+\frac{1}{b}-2\right)+\left(c+\frac{1}{c}-2\right)-\left(a+b+c\right)+6\)
\(A=\frac{a^2-2a+1}{a}+\frac{b^2-2b+1}{b}+\frac{c^2-2c+1}{c}-3+6\)
\(A=\frac{\left(a-1\right)^2}{a}+\frac{\left(b-1\right)^2}{b}+\frac{\left(c-1\right)^2}{c}+3\) \(\ge3\forall a,b,c>0\)
A = 3 \(\Leftrightarrow a=b=c=1\)
Vậy min A = 3 \(\Leftrightarrow a=b=c=1\)
\(3A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge9\) (bđt AM-GM)
\(\Rightarrow3A\ge9\Leftrightarrow A\ge3\)
\("="\Leftrightarrow a=b=c=1\)