cho tam giác ABC cân tại A. Trên tia đối của BA lấy điểm D, trên tia đối của CA lấy điểm E sao cho BD=CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh
a)HB=CK
b) góc AHB= góc AKC
c) HK// DE
xin cái hình thui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
Suy ra: HB=KC
b: Xét ΔAHB và ΔAKC có
AB=AC
\(\widehat{ABH}=\widehat{ACK}\)
BH=CK
Do đó: ΔAHB=ΔAKC
Suy ra: \(\widehat{AHB}=\widehat{AKC}\)
c: Xét ΔADE có AB/AD=AC/AE
nên BD//ED
hay DE//HK
a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có
DB=CE
góc DBH=góc ECK
=>ΔDBH=ΔECK
=>HB=CK
b: Xet ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>góc AHB=góc AKC
c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE
=>HK//ED
d: Xét ΔAHE và ΔAKD có
AH=AK
HE=KD
AE=AD
=>ΔAHE=ΔAKD
a/ Ta có: góc HBD đối đỉnh góc ABC; góc KCE đối đỉnh góc ACB mà ABC=ACB( Tg ABC cân tại A) => Góc HBD = góc KCE.
Xét tg HBD ( vuông tại H) và tg KCE ( vuông tại K) có:
góc HBD = góc KCE ( cmt)
DB=CE (gt)
=> Tg HBD=Tg KCE( ch-gn)
=> HB=CK( hai cạnh tương ứng)
b/ Xét tg AHB và tg AKC có:
HB=CK ( cmt)
góc ABH= góc ACK ( cùng kề bù với hai góc bằng nhau)
AB=AC( tg ABC cân tại A)
=> tg AHB= tg AKC ( c.g.c)
=> góc AHB = góc AKD( hai góc tương ứng)
c/ Ta có : AB+BD=AD; AC+CE=AE mà AB=AC và BD=CE => AD=AE
Trong tg ADE có AD=AE => Tg ADE cân tại A
Ta có: góc ABC= góc ACB =\(\frac{180^0-gócBAC}{2}\)và góc ADE= góc AED=\(\frac{180^0-gócBAC}{2}\)
=> góc ABC=góc ACB= góc ADE= góc AED .
Mà ABC và ADE cùng nằm ở vị trí đồng vị => HK//DE
d/ ta có: góc HAB+ góc BAC= góc HAC
góc KAC+ góc BAC= góc KAB
mà góc HAB=góc CAK ( tg AHB= tg AKC) => góc HAC= góc KAB.
Xét tg AHE và tg AKD có:
AH = AK( tg AHB= tg AKC)
góc HAC= góc KAB ( CMT)
AE=AD
=> Tg AHE =tg AKD ( c.g.c)
e/ Mk` chưa giải được.
a, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta HBD\perp H\)và \(\Delta KCE\perp K\)có :
\(BD=CE\left(gt\right)\)
Mặt khác : góc HBD đối đỉnh với góc ABC = > góc HBD = góc ABC
góc KCE đối đỉnh với góc ACB = > góc KCE = góc ACB
Mà góc ABC = ACB = > góc HBD = góc KCE
\(=>\Delta HBD=\Delta KCE\left(ch-gn\right)\)
= > HB = CK ( 2 cạnh tương ứng )
b, Xét \(\Delta AHB\)và \(\Delta AKC\)có
HB = CK ( cmt )
AB = AC ( gt )
\(\widehat{HBD}+\widehat{HBA}=180^0\)
= > \(\widehat{HBA}=180^0-\widehat{HBD}\)( 1 )
\(\widehat{KCE}+\widehat{KCA}=180^0\)
= > \(\widehat{KCA}=180^0-\widehat{KCE}\)( 2 )
Từ ( 1 ) và ( 2 ) = > \(\widehat{HBA}=\widehat{KCA}\)
\(=>\Delta AHB=\Delta AKC\left(c.g.c\right)\)
c, \(\Delta ABC\)cân tại A = > \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)( 1 )
\(B\in AD\)
= > AB + BD = AD ( * )
\(C\in AE\)
= > AC + CE = AE ( ** )
Từ ( * ) và ( ** ) = > AD = AE hay \(\Delta ADE\)cân tại A
= > \(\widehat{ADE}=\frac{180^0-\widehat{EAD}}{2}\)( 2 )
Từ ( 1 ) và ( 2 ) = > \(\widehat{ABC}=\widehat{ADE}\)hay HK // DE
d, Xét \(\Delta AHE\)và \(\Delta AKD\)có:
\(\widehat{A}\)chung
AH = AK ( cmt )
AE = AD ( cmt )
= > \(\Delta AHE=\Delta AKD\left(c.g.c\right)\)
câu e, bạn làm nốt nhé
thêm K và H hộ mik
Nếu bạn muốn cái hình thì đây nhé:
Nếu cần làm thì ib nhé !