K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Bất phương trình có dấu "=" ?

28 tháng 3 2016

1. Vì (a+1)^2=a^2+2a+1^2=a^2+2a+1   (1)

a(a+2)=a^2+2a  (2)

Từ (1)và(2) suy ra a(a+2)<(a+1)^2

11 tháng 4 2016

phá hết ngoặc ra đi bạn!

11 tháng 4 2016
Tất cả hai BPT vô nghiệm
24 tháng 4 2021

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

Dấu " = " xảy ra ⇔ a=b

 

 

20 tháng 10 2015

khai triển ta được 4n2+20n+30 = 2(2n2+10n+15) 

do 2(2n2+10n+15) luôn chẳng do đó nó tận cùng bằng 0; 2; 4; 6; 8 không thể tận cùng là 3

16 tháng 10 2021

a) ĐKXĐ: \(x\ge2\)

\(pt\Leftrightarrow x-2=x^2+2x+1\)

\(\Leftrightarrow x^2+x+3=0\)(vô lý do \(x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\))

Vậy \(S=\varnothing\)

b) ĐKXĐ: \(x\ge-3\)

\(pt\Leftrightarrow1+x^2=x^2+6x+9\)

\(\Leftrightarrow6x=-8\Leftrightarrow x=-\dfrac{4}{3}\left(tm\right)\)

23 tháng 4 2020

\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Vậy ta có đpcm

13 tháng 4 2022

a)\(=>\left[{}\begin{matrix}3x-2=0\\2x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}3x=2\\2x=-5\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

13 tháng 4 2022

e lớp 7 nên lm đc thế thôi 

thông cảm

Có 3 số => luôn chọn ra được 2 số  cùng tính chẵn lẻ

=> hiệu của chúng chia hết cho 2

=> đpcm

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm