Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra ⇔ a=b
Với điều kiện \(ab+bc+ca+abc=4\) thì \(VP-VT=\frac{bc^2\left(a-b\right)^2+ca^2\left(b-c\right)^2+ab^2\left(c-a\right)^2}{\left(a^2+2b\right)\left(b^2+2c\right)\left(c^2+2a\right)}\ge0\)
1/ Chứng minh các hằng đẳng thức:
\(x^4 + y^4 +(x+y)^4 = x^4 + y^4 + x^4 + 4x^3y + 6x^2y^2 +4xy^3 + y^4 \\\ = 2x^4 +2y^4 +4x^2y^2+4x^3y+4xy^3+2x^2y^2\)
\(= 2(x^4 +y^4 +2x^2y^2)+4xy(x^2+y^2) + 2x^2y^2 \\\ = 2(x^2 + y^2)2 + 4xy(x^2 + y^2) +2x^2y^2\)
\(=2(x^2 +y^2) +2xy(x^2+ y^2) +x^2y^2) = 2(x^2 + y^2 + xy)^2 \\\ ⇒ đpcm\)
2/
Ta có : \([(5a - 3b) + 8c][(5a - 3b) - 8c] \)
\(= (5a - 3b)^2 - 64c^2\) (theo hiệu hai bình phương)
\(= 25a^2 - 30ab + 9b^2 - 64c^2\) (theo bình phương của hiệu)
\(= 25a^2 - 30ab + 9b^2 - 16(a^2 - b^2)\) (vì \(4c^2 = a^2 - b^2\))
\(= 9a^2 - 30ab + 25b^2 \)
\(= (3a - 5b)^2\) (theo bình phương của hiệu).
a,(a-1)(a-2)+(a-3)(a-4)-(2a^2+5a+34)
=a2-3a+2+a2-7a+12-2a2-5a-34
=-15a-20
sai đề kakakakakaka
b, (a-b)(a^2+ab+b^2)-(a+b)(a^2+ab+b^2)
=a3-b3-(a3+b3)
=a3-b3-a3-b3
=-2b3
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Vậy ta có đpcm