Tìm số tự nhiên x nhỏ nhất biết x chia cho 8 dư 7 cho 31 dư 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bai ra ta co:
A=8x+7
A=31x+28
(voi x, b nguyen duong va nho nhat)
=>8x+7=31b+28
=>8x-31b=21
=>x=(21+31b)/8
=3+4b-(3+b)/8
x nguyen duong va nho nhat khi 3+b nho nhat va chia het cho 8; (3+b)/8 < 3+4b
=>b=5
=>x=(21+31b)/8=22
Thay vao x ta được x=8a+7=8.22+7=183
Vậy x=183
Gọi số tự nhiên cần tìm là n (n thuộc N; n \(\ge\)999)
Khi đó : n chia 8 dư 7 => (n+1) chia hết cho 8
n chia 31 dư 28 => (n+3) chia hết cho 31
Ta có ( n+ 1) + 64 chia hết cho 8 = (n+3) + 62 chia hết cho 31
Vậy (n+65) chia hết cho 31 và 8
Mà (31,8) = 1 => n+65 chia hết cho 248
Vì n \(\ge\)999 nên (n+65) 1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn \
=> n = 927
Vậy số tự nhiên cần tìm là : 927 .
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
1/Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
a:8 dư 7 <=>(a+1) chia hết 8<=>(a+1)+64 chia hết 8(vì 64 chia hết 8)<=>a+65 chia hết 8
a:31 dư28<=>n+3 chia hết 31 <=>( n+3)+62 chia hết 3(vì 62 chia 31)<=>n+65 chia hết 31
=>a+65 chia hết 8 và 31
mà a +65 lớn nhất
=> a+65 chia hết cho 248
Ta thấy Vì a<=999 nên (a+65) <= 1064</span>
<=> (a+65)/ 248 <= 4,29</span>
vì (a+65)/ 248 nguyên và n lớn nhất nên (a+65)/ 248 = 4
<=> a= 927
chuc cau hoc tot Đoàn Thị Minh Hiền