Tìm \(x,y\in Z\)thỏa mãn:
\(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi mk ấn nhầm
Dựa vào tính chất của dãy tỉ số bằng nhau ta có 2=1/ x+y+z => x+y+z= 1/2
Thay vào ta có y+z+2=2x và y+z=1/2-x
=> 1/2-x+2=2x => 5/2-x=2x => 3x=5/2
=> x=5/6
Tương tự tìm y và z
\(\frac{\left(y+z+2\right)+\left(x+z+3\right)+\left(x+y-5\right)}{x+y+z}=\frac{1}{x+y+z}\)
\(\frac{y+y+z+z+2+3-5+x+x}{x+y+z}=\frac{2y+2z+0+2x}{x+y+z}\)
\(\frac{2+2+2+y.z.x}{x+y+z}=\frac{6+yzx}{x+y+z}\)
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49.\frac{12}{49}=12\)
\(\Rightarrow\begin{cases}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=12.\frac{5}{4}=15\end{cases}\)
Vậy x = 18; y = 16; z = 15
Giải:
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
+) \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)
+) \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)
+) \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)
Vậy bộ số \(\left(x,y,z\right)\) là \(\left(18,16,15\right)\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Cô - si ngược dấu :
\(\sqrt{x-2010}=\frac{1}{2}\sqrt{4\left(x-2010\right)}\le\frac{4+\left(x-2010\right)}{4}\)
\(\Rightarrow\sqrt{x-2010}-1\le\frac{4+\left(x-2010\right)}{4}-1=\frac{x-2010}{4}\)
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}\le\frac{1}{4}\)
Hoàn toàn tương tự với những phân thức còn lại
\(\Rightarrow\frac{\sqrt{x-2010}-1}{x-2010}+\frac{\sqrt{y-2011}-1}{y-2011}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2010=4\\x-2011=4\\z-2012=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=2014\\y=2015\\z=2016\end{cases}}}\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
dùng bdt cosi cho 2 só ko âm tương ứng: x^5+1/x....
T lớn hơn hoặc = 2x^2+2y^2+2z^2
T >= 2(x^2+y^2+z^2)
T >= 2(xy+yz+xz)
...............
Tham khảo link này nha
https://olm.vn/hoi-dap/detail/243232541423.htm
ta có
\(\frac{x}{3}\)=\(\frac{y}{2}\)=> \(\frac{x}{9}\)=\(\frac{y}{6}\)
\(\frac{y}{3}\)=\(\frac{z}{5}\)=>\(\frac{y}{6}\)=\(\frac{z}{10}\)
=>\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)=> \(\frac{2x}{18}\)=\(\frac{y}{6}\)=\(\frac{3z}{30}\)=\(\frac{2x-y+3z}{18-6+30}\)=\(\frac{42}{42}\)=1
Ta lại có:
\(\frac{2x}{18}\)= 1=> 2x=18=>x=9
\(\frac{y}{6}\)= 1 =>y=6
\(\frac{3z}{30}\)= 1=>3z=30=>z=10
Vậy x=9 ; y=6 và z=10
Ta có : \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\) => \(\frac{x}{3}-\frac{1}{5}=\frac{4}{y}\)
=> \(\frac{5x-3}{14}=\frac{4}{y}\) => \(\left(5x-3\right)y=56\)
=> 5x - 3; y là ước của 56
Vì \(x,y\in Z\) => \(\left(x,y\right)\in\left\{\left(1;28\right),\left(2;8\right),\left(-5;-2\right)\right\}\)
Vậy ....
Study well ! >_<
\(\frac{xy-12}{3y}=\frac{1}{5}\)
\(5xy-60=3y\)
\(5xy-3y=60\)
\(y.\left(5x-3\right)=60\)
Lập bảng tính