\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1:x+y+z=0 \(\Rightarrow x=y=z=0\)

TH2:x+y+z\(\ne0\)

Áp dụng t/c .............

Được x+y+z=1/2

Biến đổi ta được \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)

23 tháng 11 2017

Bỏ một cái =3 đi nha mk đánh nhầm thông cảm dùm

23 tháng 11 2017

x = 1

y = 1

z = 1

13 tháng 8 2020

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(vì x + y + z khác 0)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\hept{\begin{cases}\frac{y+z+1}{x}=2\\\frac{x+z+2}{y}=2\\\frac{x+y-3}{z}=2\end{cases}}\) => \(\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\end{cases}}\) => \(\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}}\)=> \(\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{5}{2}\\3z=-\frac{5}{2}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)

Khi đó: A = \(2016\cdot\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}-\left(\frac{5}{6}\right)^{2017}=1008\)

13 tháng 8 2020

Ta có \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

                                                                                                                 \(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó \(\frac{1}{x+y+z}=2\Rightarrow x+y+z=\frac{1}{2}\)

Lại có \(\frac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow x+y+z+1=3x\Rightarrow\frac{1}{2}+1=3x\Rightarrow3x=\frac{3}{2}\)

=> x = 1/2 

Lại có \(\frac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow x+y+z+2=3y\Rightarrow\frac{1}{2}+2=3y\Rightarrow3y=\frac{5}{2}\)

=> y = 5/6

Lại có x + y + z = 1/2

=> 1/2 + 5/6 + z = 1/2

=> 5/6 + z = 0

=> z = -5/6

Khi đó A = 2016X + y2017 + z2017

= 2016.1/2 + (5/6)2017 - (5/6)2017

= 1008

Vậy A = 1008

26 tháng 8 2018

Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow x=k\)

     \(y=2k\)

     \(z=3k\)

Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)

\(=6k.\frac{6}{k}\)

\(=\frac{36k}{k}=36\)

=.= hok tốt!!

26 tháng 8 2018

Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

Do đó  \(x=k;y=2k;z=3k\)

Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có 

\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)

\(=6k.\frac{6+12+18}{6k}\)

\(=\frac{6k.\left(6+12+18\right)}{6k}\)

\(=36\)

Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)

15 tháng 8 2018

Áp dụng tính chất dãy tỉ số bằng nhau thì có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\frac{y+z-x}{x}=1\Rightarrow y+z-x=x\Leftrightarrow y+z=2x\)(1)

Tương tự: \(z+x=2y;\)(2)   \(x+y=2z\)(3)

Đặt \(S=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(S=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\). Thay (1); (2) và (3) vào S có:

\(S=\frac{2x.2y.2z}{xyz}=8\). ĐS: ...