K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Lời giải:

a)

Ta có:

\(\left\{\begin{matrix} AM\parallel BC\\ AD\perp BC\end{matrix}\right.\Rightarrow AM\perp AD\Rightarrow \widehat{MAD}=90^0\)

\(\left\{\begin{matrix} BM\parallel AD\\ AD\perp BC\end{matrix}\right.\Rightarrow BM\perp BC\Rightarrow \widehat{MBD}=90^0\)

Tứ giác $AMBD$ có 3 góc vuông \(\widehat{MAD}=\widehat{MBD}=\widehat{ADB}=90^0\) nên $AMBD$ là hình chữ nhật.

b)

Xét tam giác $AHE$ và $BCE$ có:

\(\widehat{AEH}=\widehat{BEC}=90^0\)

\(\widehat{HAE}=\widehat{CBE}(=90^0-\widehat{C})\)

\(\Rightarrow \triangle AHE\sim \triangle BCE(g.g)\)

c)

Xét tam giác $ADC$ và $BEC$ có:

\(\widehat{ADC}=\widehat{BEC}=90^0\)

\(\widehat{C}\) chung

\(\Rightarrow \triangle ADC\sim \triangle BEC(g.g)\Rightarrow \frac{AC}{BC}=\frac{DC}{EC}\)

Xét tam giác $DEC$ và $ABC$ có:

\(\widehat{C}\) chung

\(\frac{DC}{EC}=\frac{AC}{BC}\) (cmt)

\(\Rightarrow \triangle DEC\sim \triangle ABC(c.g.c)\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 4 2019

Hình vẽ:

Tam giác đồng dạng

27 tháng 4 2021

Ta có: AEH=90⁰.

=>HAE+AHE=90⁰.(1)

Ta có: ∆BHD vuông tại D.

=>DBH+BHD=90⁰.(2)

Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.

Mà: AHE=DBH (2 góc đối đỉnh).

=> HAE=DBH.

=>HAE=DBE.

=>∆HEA~CBE(g.g).

=>AE/BE=HE/CE.

=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².

=> (AE+CE)²=4AE.CE.

=>(AE-CE)²=0.

=>AE=CE 

=> E là trung điểm của AC 

=> BE là đường trung tuyến của ∆ABC 

Mà: BE là đường cao của ∆ABC.

=> ∆ABC cân tại B.

 

 

 

 

 

 

11 tháng 12 2022

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC và MN=1/2BC

=>ND//BC 

Xét tứ giác BDNC có

BD//NC

DN//BC

DO đó; BDNC là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là trung tuyến

nên HN=AN(2)

Từ (1) và (2) suy ra MN là trung trực của AH

=>DN là trung trực của AH

=>DA=DH

mà DA=NB

nên DH=NB

Xét tứ giác DBHN có

DN//BH

DH=NB

DO đó: DBHN là hình thang cân

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.