Cho \(\Delta\)ABC nhọn. Các đg cao AD,BE cắt nhau tại H . Qua A kẻ đt song song vs BC . Qua B kẻ đt song song vs AD . Chúng cắt nhau tại M.
a, Tứ giác AMBD là hình j ? Vì s ?
b, CM \(\Delta AHE\sim\Delta BCE\)
\(\Delta DEC\sim\Delta ABC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AEH=90⁰.
=>HAE+AHE=90⁰.(1)
Ta có: ∆BHD vuông tại D.
=>DBH+BHD=90⁰.(2)
Từ (1) và (2) suy ra: HAE+AHE=DBH+BHD=90⁰.
Mà: AHE=DBH (2 góc đối đỉnh).
=> HAE=DBH.
=>HAE=DBE.
=>∆HEA~CBE(g.g).
=>AE/BE=HE/CE.
=>BE.HE=AE.CE.=>4BE.HE=4AE.CE.=>4BE.HE=AC².
=> (AE+CE)²=4AE.CE.
=>(AE-CE)²=0.
=>AE=CE
=> E là trung điểm của AC
=> BE là đường trung tuyến của ∆ABC
Mà: BE là đường cao của ∆ABC.
=> ∆ABC cân tại B.
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=1/2BC
=>ND//BC
Xét tứ giác BDNC có
BD//NC
DN//BC
DO đó; BDNC là hình bình hành
b: Ta có: ΔAHB vuông tại H
mà HM là trung tuyến
nên HM=AM(1)
Ta có: ΔAHC vuông tại H
mà HN là trung tuyến
nên HN=AN(2)
Từ (1) và (2) suy ra MN là trung trực của AH
=>DN là trung trực của AH
=>DA=DH
mà DA=NB
nên DH=NB
Xét tứ giác DBHN có
DN//BH
DH=NB
DO đó: DBHN là hình thang cân
a. Xét △ AFC và △ AEB có:
\(\widehat{BAC}\) chung
\(\widehat{AFC}=\widehat{AEB}=90^0\)
⇒ △AFC đồng dạng với △ AEB(g.g)
⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)
⇒ \(AB.AF=AE.AC\)
\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)
Xét △ AEF và △ ABC có :
\(\widehat{BAC}\) chung
\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)
⇒△ AEF đồng dạng với △ ABC (c.g.c)
Mấy câu kia bạn tự làm nốt đi nhá.
Lời giải:
a)
Ta có:
\(\left\{\begin{matrix} AM\parallel BC\\ AD\perp BC\end{matrix}\right.\Rightarrow AM\perp AD\Rightarrow \widehat{MAD}=90^0\)
\(\left\{\begin{matrix} BM\parallel AD\\ AD\perp BC\end{matrix}\right.\Rightarrow BM\perp BC\Rightarrow \widehat{MBD}=90^0\)
Tứ giác $AMBD$ có 3 góc vuông \(\widehat{MAD}=\widehat{MBD}=\widehat{ADB}=90^0\) nên $AMBD$ là hình chữ nhật.
b)
Xét tam giác $AHE$ và $BCE$ có:
\(\widehat{AEH}=\widehat{BEC}=90^0\)
\(\widehat{HAE}=\widehat{CBE}(=90^0-\widehat{C})\)
\(\Rightarrow \triangle AHE\sim \triangle BCE(g.g)\)
c)
Xét tam giác $ADC$ và $BEC$ có:
\(\widehat{ADC}=\widehat{BEC}=90^0\)
\(\widehat{C}\) chung
\(\Rightarrow \triangle ADC\sim \triangle BEC(g.g)\Rightarrow \frac{AC}{BC}=\frac{DC}{EC}\)
Xét tam giác $DEC$ và $ABC$ có:
\(\widehat{C}\) chung
\(\frac{DC}{EC}=\frac{AC}{BC}\) (cmt)
\(\Rightarrow \triangle DEC\sim \triangle ABC(c.g.c)\)
Ta có đpcm.
Hình vẽ: