cho tam giác ABC vuông ở A phân giác góc B cắt AC tại D.kẻ DE vuông BC tại E
a,c/m:tam giác BAD=tam giác BED
b,c/m:BD là trung trực của AE
c, so sánh :AD và DC
d, gọi F là giao điểm của AB và DE.tam giác BCF và tam giác gì ?vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b, Ta có : góc BAD = góc BED=90 độ (hai góc tương ứng)
=> góc BED là góc V
Ta có ; DA=DE (hai cạnh tương ứng)
a, Xét tam giác ABD và tam giác EBD có:
góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
BD=BD(chung)
góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
b: Ta có: ΔBAD=ΔBED
nên BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE\(\left(1\right)\)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE\(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE
a, tam giác ABC vuông tại A (gt)
=> AB^2 + AC^2 = BC^2 (đl Pytago)
có AB = 6; BC = 10
=> AC = 8 do AC > 0
b, xét tam giác DAB và tam giác DEB có : BD chung
^DAB = ^DEB = 90
^ABD = ^EBD do BD là phân giác của ^ABC (gt)
=> tg DAB = tg DEB (ch-gn)
c, tg DAB = tg DEB (câu b)
=> DA = DE (Đn)
xét tg DAF và tg DEC có : ^DAF = ^DEC = 90
^ADF = ^EDC (Đối đỉnh)
=> tg DAF = tg DEC (cgv-gnk)
=> DF = DC (đn)
có DC > DE
=> DE < DF
+ xét tg CFB có : CA _|_ FB; FE _|_ BC mà FE cắt CA tại D
=> BD _|_ CF
A) XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(10^2=6^2+AC^2\)
\(100=36+AC^2\)
\(\Rightarrow AC^2=100-36\)
\(\Rightarrow AC^2=64\)
\(\Rightarrow AC=\sqrt{64}=8\left(cm\right)\)
ta có \(AD+DC=AC\)
\(\Leftrightarrow3+DC=8\)
\(\Leftrightarrow DC=8-3=5\left(cm\right)\)
B) XÉT \(\Delta ABD\)VÀ \(\Delta EBD\)CÓ
\(\widehat{BAD}=\widehat{BED}=90^o\)
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
BD LÀ CẠNH CHUNG
=>\(\Delta ABD\)=\(\Delta EBD\)( CH-GN)
\(\Rightarrow BA=BE\)(HAI CẠNH TƯƠNG ỨNG )
=> \(\Delta BAE\)LÀ TAM GIÁC CÂN TẠI B
c) XÉT \(\Delta ADF\)VUÔNG TẠI A
\(\Rightarrow DF>AD\left(1\right)\)( CẠNH HUYỀN LỚN NHẤT )
VÌ \(\Delta ABD\)=\(\Delta EBD\)(CMT)
=> \(AD=ED\left(2\right)\)(HAI CẠNH TƯƠNG ỨNG )
TỪ (1) VÀ (2)
\(\Rightarrow DF>ED\)
a, xét 2 t.giác vuông BAD và BED có:
BD cạnh chung
\(\widehat{ABD}\)=\(\widehat{EBD}\)(gt)
=>\(\Delta BAD=\Delta BED\)(cạnh huyền-góc nhọn)
b, Gọi O là giao điểm của AE và BD
xét t.giác OBA và t.giác OBE có:
AB=EB(theo câu a)
\(\widehat{ABO}\)=\(\widehat{EBO}\)(gt)
OB cạnh chung
=> t.giác OBA=t.giác OBE(c.g.c)
=> OA=OE=> O là trung điểm của AE(1)
\(\widehat{BOA}\)=\(\widehat{BOE}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{BOA}\)+\(\widehat{BOE}\)=180 độ
=>\(\widehat{BOA}\)=\(\widehat{BOE}\)=90 độ=> BO\(\perp\)AE(2)
Từ (1) và (2) suy ra BD là trung trực của AE
c, xét 2 t.giác vuông ADF và EDC có:
AD=DE(t.giác BAD=t.giác BED)
\(\widehat{ADF}\)=\(\widehat{EDC}\)(vì đối đỉnh)
=> t.giác ADF=t.giác EDC(cạnh góc vuông-góc nhọn kề)
=> DC=DF(2 cạnh tương ứng) mà AD<DF(cạnh huyền lớn hơn cạnh góc vuông) suy ra AD<DC đpcm
d, vì DC=DF(t.giác ADF=t.giác EDC) => t.giác CDF cân tại D=> \(\widehat{DCF}\)=\(\widehat{DFC}\)(1)
mà \(\widehat{DCE}\)=\(\widehat{DFA}\)(t.giác ADF=t.giác EDC)(2)
Từ (1) và (2) suy ra \(\widehat{FCB}\)=\(\widehat{CFB}\)
=> tam giác BCF là tam giác cân tại B