Cho \(\Delta ABC\) có 3 góc nhọn , các đường cao BD, CE cắt nhau tại H. C/minh: \(\Delta EHD\sim\Delta BHC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bạn tự vẽ nha.
a) Xét tam giác ADB và tam giác AEC có:
góc BAC là góc chung
góc ADB =góc AEC
Suy ra: Tam giác ADB đồng dạng với tam giác AEC (g.g)
=> AD/AE = AB/AC (cạnh tương ứng)
=> AD/AB = AE/AC
Xét tam giác AED và tam giác ACB có:
góc BAC là góc chung
AD/AB = AE/AC (cmt)
Suy ra tam giác AED đồng dạng với tam giác ACB (c.g.c)
b) Gọi giao điểm của AH và BC là K.
Xét tam giác ABC có
BD và CE là 2 đường cao mà chúng cắt nhau tại H
nên H là trực tâm của tam giác ABC
=>AK vuông góc với BC
Xét tam giác BKH và tam giác BDC có:
góc HBK là góc chung
góc BKH = góc BDC
Suy ra BD/BK = BC/BH
=> BD.BH = BC.BK (1)
Chứng minh tương tự ta cũng có : tam giác CKH đồng dạng với tam giác CEB
=> CK/CE = CH/CB
=> CE.CH = BC.CK (2)
Lấy (1)+(2) ta được đpcm
Bạn tự vẽ hình nhé^^
a) xét tam giác HDC và tam giác HEB có:
góc E= góc D(=90 độ)
góc EHB = góc DHC(2 góc đối đỉnh)
=> tam giác HDC đồng dạng tam giác HEB(g-g)
=>HD/HE = HC/HB=> HD.HB=HE.HC(đpcm)
b)Xét tam giác ADB vuông tại D và tam giác AEC Vuông tại E có:
góc A: góc chung
=> tam giác ADB đồng dạng tam giác AEC (g-g)
=>AD/AE=AB/AC
Xét tam giác AED và tam giác ACB có:
góc A: góc chung
AD/AE=AB/AC (cmt)
=> tam giác AED đồng dạng tam giác ACB(c-g-c)
=>góc ADE=góc ABC (đpcm)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
chung
Do đó: ΔABDΔACE(g-g)
b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
(hai góc đối đỉnh)
Do đó: ΔHEBΔHDC(g-g)
Suy ra:
hay
a)
xét tam giác EHB và tam giác DHC có
góc BEC = góc CDH = 90 độ
góc EHB = góc DHC (hai góc đối đỉnh)
=> tam giác EHB đồng dạng tam giác DHC (g-g)
b)
vì tam giác EHB đồng dạng tam giác DHC (cmt)
=> `(HB)/(HC)=(HE)/(HD)` (tính chất)`
=> `HB*HD=HE*HC`
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
b: Xét ΔEHB vuông tại E và ΔDHC vuông tại H có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔEHB\(\sim\)ΔDHC
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)
hay \(HE\cdot HC=HB\cdot HD\)
c: Xét tứ giác HBKC có
HB//KC
HC//BK
Do đó: HBKC là hình bình hành
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
hay H,M,K thẳng hàng
a, xét \(\Delta BAD\)và\(\Delta CAE\)có:
\(\widehat{BAD}=\widehat{CAE}\)(góc chung)
\(\widehat{BDA}=\widehat{CEA}\left(90^0\right)\)
\(\Rightarrow\Delta BAD~\Delta CAE\left(g.g\right)\)
\(b,\)xét \(\Delta EHB\)và\(\Delta DHC\)có:
\(\widehat{EHB}=\widehat{DHC}\)(đối đỉnh)
\(\widehat{HEB}=\widehat{HDC}\left(=90^0\right)\)
\(\Rightarrow\Delta EHB~\Delta DHC\left(g.g\right)\)
\(\Rightarrow\frac{HE}{HD}=\frac{HB}{HC}\Rightarrow HE.HC=HB.HD\)
c,\(HE.HC=HB.HD\Rightarrow\frac{HE}{HB}=\frac{HD}{HC}\)
xét\(\Delta EHD\)và\(\Delta BHC\)có
\(\frac{HE}{HB}=\frac{HD}{HC}\left(cmt\right)\)
\(\widehat{EHD}=\widehat{BHC}\)(đối đỉnh)
\(\Rightarrow\Delta EHD~\Delta BHC\left(c.g.c\right)\)