K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay x=-2 vào hàm số f(x)=|3x-1|, ta được:

\(f\left(-2\right)=\left|3\cdot\left(-2\right)-1\right|=\left|-6-1\right|=7\)

Thay x=2 vào hàm số \(f\left(x\right)=\left|3x-1\right|\), ta được:

\(f\left(2\right)=\left|3\cdot2-1\right|=\left|6-1\right|=5\)

Thay \(x=-\dfrac{1}{4}\) vào hàm số \(f\left(x\right)=\left|3x-1\right|\), ta được:

\(f\left(-\dfrac{1}{4}\right)=\left|3\cdot\dfrac{-1}{4}-1\right|=\left|-\dfrac{3}{4}-\dfrac{4}{4}\right|=\dfrac{7}{4}\)

Thay \(x=\dfrac{1}{4}\) vào hàm số \(f\left(x\right)=\left|3x-1\right|\), ta được:

\(f\left(\dfrac{1}{4}\right)=\left|3\cdot\dfrac{1}{4}-1\right|=\left|\dfrac{3}{4}-1\right|=\dfrac{1}{4}\)

Vậy: f(-2)=7; f(2)=5; \(f\cdot\left(-\dfrac{1}{4}\right)=\dfrac{7}{4}\)\(f\left(\dfrac{1}{4}\right)=\dfrac{1}{4}\)

b) Để f(x)=10 thì \(\left|3x-1\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=10\\3x-1=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=11\\3x=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{3}\\x=-3\end{matrix}\right.\)

Để f(x)=-3 thì \(\left|3x-1\right|=-3\)

mà \(\left|3x-1\right|\ge0\forall x\)

nên \(x\in\varnothing\)

f(x)=2

=>-1/2x=2

hay x=-4

9 tháng 9 2018

Chọn A

Từ đồ thị của hàm số y = f'(x) ta có bảng biến thiên của hàm số y = f(x) trên đoạn [-1;2] như sau

Nhận thấy

Để tìm  ta so sánh f(-1) và f(2)

Theo giả thiết, 

Từ bảng biến thiên , ta có f(0) - f(1) > 0. Do đó f(2) - f(-1) > 0 


7 tháng 7 2018

\

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

17 tháng 2 2017

Dựa vào bảng xét dấu của f '(x) ta có bảng biến thiên của hàm số  trên đoạn [0;5] như sau

Suy ra Và 

Ta có 

Vì f(x)  đồng biến trên đoạn [2;5] nên 

⇒ f(5)>f(0)

Vậy

Chọn đáp án D.