Baøi 3. Cho tam giác ABC trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy E sao cho AE=AC. Chứng minh BCDE là hình bình hành.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
6 tháng 10 2021
Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó: BCDE là hình bình hành
14 tháng 8 2019
( Hình tự vẽ nha )
Ta có : AB = AE ( gt )
AD = AC ( gt )
Do đó : AB + AD = AC + AE
=> BD = EC
=> Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau )
16 tháng 11 2021
Xét tứ giác BCDE có
A là trung điểm của EC
A là trung điểm của BD
Do đó: BCDE là hình bình hành
mà \(\widehat{EDC}=90^0\)
nên BCDE là hình chữ nhật
3 tháng 8 2017
xét tg BCDE có: A là t/đ của BD(vì AB=AD) và A là t/đ của EC(vì AC=AE)
=> tg BCDE là hbh(DH)
Vì A là trung điểm của BD và CE nên BCDE là hbh
sai r