1/1945*1945+1/1946*1946+1/1947*1947+...+1/1974+*1974+1/1975*1975<1/1944
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+...+\frac{1}{1975^2}\)
\(< \frac{1}{1944\cdot1945}+\frac{1}{1945\cdot1946}+...+\frac{1}{1974.1975}\)
\(=\frac{1}{1944}-\frac{1}{1945}+\frac{1}{1945}-\frac{1}{1946}+...+\frac{1}{1974}-\frac{1}{1975}\)
=\(\frac{1}{1944}-\frac{1}{1975}< \frac{1}{1944}\)
\(\Rightarrow\frac{1}{1945^2}+\frac{1}{1946^2}+\frac{1}{1947^2}+..+\frac{1}{1975^2}< \frac{1}{1944}\)
Ta có : P = \(\dfrac{1}{1975}\left(\dfrac{2}{1945}-1\right)-\dfrac{1}{1945}\left(1-\dfrac{2}{1975}\right)+\dfrac{1974}{1975}.\dfrac{1946}{1945}\)
\(-\dfrac{3}{1975.1945}\)
= \(\dfrac{2}{1975.1945}-\dfrac{1}{1975}-\dfrac{1}{1945}+\dfrac{2}{1975.1945}+\dfrac{1974}{1975}.\dfrac{1946}{1945}\)
\(-\dfrac{3}{1975.1945}\)
= \(\dfrac{2+2+1974.1946-3-1975-1945}{1975.1945}\)
= \(\dfrac{2+2+1974.1946-3-1975-1945}{1975.1945}\)
= \(\dfrac{1973}{1975}\)