Bài 1:
a) Cho đa thức f(x) thoả mãn điều kiện: (x-3).f(x+1)=(x+2).f(x). Chứng minh rằng f(x) có ít nhất 2 nghiệm
b) Cho \(Q\left(x\right)=x^9-1001x^8+1001x^7-1001x^6+....+1001x+101.3\). Tính Q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=x^8-1001x^7+...-1001x+250
=x^8-x^7(x+1)+x^6(x+1)-...-x(x+1)+250
=x^8-x^8-x^7+x^7+...-x^2-x+250
=250-x
=-750
1) Thay x=3 vào đẳng thức, thu được:
\(3\times f\left(3+2\right)=\left(3^2-9\right)\times f\left(3\right)\)
\(\Leftrightarrow\) \(3\times f\left(5\right)=0\times f\left(3\right)=0\)
\(\Leftrightarrow\) \(f\left(5\right)=0\)
2) Ta đã chứng minh x=5 là nhiệm của f(x)\(\Rightarrow\)Cần chứng minh f(x) có 2 nghiệm nữa
\(0\times f\left(0+2\right)=\left(0^2-9\right)\times f\left(0\right)\)
\(\Leftrightarrow\) \(f\left(0\right)=0\)
\(\Rightarrow\)x=0 là ngiệm của f(x)
\(-3\times f\left(-3+2\right)=\left(\left(-3\right)^2-9\right)\times f\left(-3\right)\)
\(\Leftrightarrow\)\(-3\times f\left(-1\right)=0\times f\left(-3\right)=0\)
\(\Leftrightarrow\)\(f\left(-1\right)=0\)
\(\Rightarrow\)x=-1 là nghiệm của f(x)
Vậy f(x) có ít nhất 3 nghiệm là x=5; x=0; x=-1