Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo nha
https://olm.vn/hoi-dap/detail/77562326250.html
Lời giải:
\(xf(x-2)=(x-4)f(x)\)
Thay $x=0$:
\(0.f(-2)=-4f(0)\)
\(\Leftrightarrow f(0)=0(1)\)
Thay $x=4$:
\(4f(2)=0.f(4)\)
\(\Leftrightarrow f(2)=0(2)\)
Từ $(1);(2)$ chứng tỏ $x=0; x=2$ là nghiệm của $f(x)$ (còn những nghiệm khác mà ta chưa khai thác được) . Từ đây ta suy ra đa thức $f(x)$ có ít nhất 2 nghiệm (đpcm)
Bài 4:
\(f\left(5\right)-f\left(4\right)=2019\)
=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)
=>\(61a+9b+21c=2019\)
\(f\left(7\right)-f\left(2\right)\)
\(=343a+49b+7c+d-8a-4b-2c-d\)
\(=335a+45b+5c\)
\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số
a) Vì x=14 nên x+1=15
Thay 15=x+1 vào A(x) Ta có:
A(x)= x^15-(x+1)x^14+(x+1)x^13-(x+1)x^12+...+(x+1)x^3-(X+1)^2+(x+1)x-15
=x^15-x^15-x^14+x^14+x^13-x^13-...+X^4+x^3-X^3-x^2+x^2-x-15
=x-15
=> A(14)=14-15=-1
Vậy A(14)=-1
b) Với x=10 ta có
0.f(-4)=-2.f(0)
=>0=2.f(0) => f(0)=0
=> Đa thức f(x) có 1 nghiệm là 0 (1)
Với x =2 tao có: 2.f(-2)=0.(f) (2)
Từ (1) và (2)
=> Đa thức này có 2 nghiệm
k mình nha
cho đa thức f (x) thỏa mãn điều kiện x.f(x+1) = (x+2).f(x) .Chứng minh rằng f(x) có ít nhất 2 nghiệm
x.f(x+1) = (x+2).f(x)
Thay x= 0
Ta có :0.f(0+1) = (0+2).f(0)
=>0 = 2.f(0)
=>f(0)=0
Do đó 0 là một nghiệm của đa thức f(x) (1)
Thay x=-2
Ta có: (-2).f(-2+1)=(-2+2).f(-2)
=>(-2).f(-1) = 0 .f(-2)
=>(-2).f(-1)=0
=>f(-1)=0
Do đó -1 là một nghiệm của đa thức f(x) (2)
Vậy từ (1) và (2) =>Đa thức f(x) có ít nhất 2 nghiệm là 0 và -1 (đpcm)
\(x.f\left(x+1\right)=\left(x+2\right)f\left(x\right)\)
Thay \(x=0\):
\(\Leftrightarrow0=2f\left(0\right)\Leftrightarrow f\left(0\right)=0\)
Vậy \(x=0\)là nghiệm của phương trình \(f\left(x\right)=0\)
Thay \(x=\left(-2\right)\):
\(-2f\left(-1\right)=0\Leftrightarrow f\left(-1\right)=0\)
Vậy \(x=\left(-1\right)\)là nghiệm của phương trình \(f\left(x\right)=0\)