Cho A = n + 5 /n+2(n thuộc N).Tìm n để A là 1 số tự nhiên.
Giải nhanh hộ mình với!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n+3⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;7\right\}\)
hay \(n\in\left\{0;2\right\}\)
Ta có
A = \(\frac{n-3}{2n-1}-\frac{n-5}{2n-1}\)
= \(\frac{(n-3)-(n-5)}{2n-1}\)
= \(\frac{n-3-n+5}{2n-1}\)
= \(\frac{n-n-3+5}{2n-1}\)
= \(\frac{2}{2n-1}\)
Để \(\frac{2}{2n-1}\inℕ\)
=> \(2⋮2n-1\)
=> \(2n-1\inƯ\left(2\right)\)
=> \(2n-1\in\left\{1;2\right\}\)
Xét từng trường hợp ta có :
+) 2n - 1 = 1
=> 2n = 1 + 1
=> 2n = 2
=> n = 2 : 2
=> n = 1 (chọn)
+) 2n - 1 = 2
=> 2n = 2 + 1
=> 2n = 3
=> n = 3 : 2
=> n = 1,5 (loại)
Vậy n = 1
\(A=\frac{n-3}{2n-1}-\frac{n-5}{2n-1}=\frac{\left(n-3\right)-\left(n-5\right)}{2n-1}=\frac{2}{2n-1}\)
Để \(A\in Z\)thì \(\frac{2}{2n-1}\in Z\)hay \(\left(2n-1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
2n - 1 | -2 | -1 | 1 | 2 |
n | -1/2 | 0 | 1 | 3/2 |
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;\frac{3}{2}\right\}\)
a) Để A có giá trị nguyên => n - 5 chia hết n + 1
=> n + 1 - 6 chia hết n + 1
Vì n + 1 chia hết n + 1
=> 6 chia hết n + 1
=> n + 1 thuộc Ư(6) = {........}
=> .......................Còn lại bạn tự làm nha!
b) Giả sử tử và mẫu cùng chia hết cho số nguyên tố d
=> n - 5 chia hết d và n + 1 chia hết d
=> ( n+1) - ( n - 5) chia hết d
=> 6 chia hết d => d = 2 ; 3 ( vì d là số nguyên tố)
=> Có 2 trường hợp .....tự làm nha
a,n-5/n-1=((n-1)-4)/n-1
=1-(4/n-1)
=> n-1 thuộc Ư(4) =>n-1 =1, -1, 2, -2, 4, -4
=>.......
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
\(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=\)\(1+\frac{3}{n+2}\)
Để A nguyên =>\(\frac{3}{n+2}\)nguyên =>\(3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
ta có bảng sau:
n+2 -3 -1 1 3
n -5 -3 -1 1
Vậy n={-5;-3;-1;1}
Để \(A\inℕ\) thì \(\left(n+5\right)⋮ \left(n+2\right)\)
\(\Rightarrow\left(n+2+3\right)⋮\left(n+2\right)\)
Vì \(\left(n+2\right)⋮\left(n+2\right)\) nên \(3⋮\left(n+2\right)\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
Mà n là số tự nhiên nên n = 1
'Vậy n = 1 để A là số tự nhiên.