Chứng minh rằng :
B = 1/21 + 1/31 + 1/43 +...+ 1/211 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+...+\frac{1}{211}< \frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}=A\)
Mà \(A=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(A=\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+...+\frac{15-14}{14.15}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}=\frac{1}{4}-\frac{1}{15}=\frac{3}{20}\)
Mà \(\frac{1}{5}=\frac{4}{20}>A=\frac{3}{20}\)
=> Biểu thức đề bài cho là đúng
Ta thấy:
1/3 < 1/2 = 1 - 1/2
1/7 = 1/(3x2 + 1) < 1/(3x2) = 1/2 - 1/3
1/13 = 1/(3x4 + 1) < 1/(3x4) = 1/3 - 1/4
1/21 = 1/(4x5 + 1) < 1/(4x5) = 1/4 - 1/5
..........................................
..........................................
1/73 = 1/(8x9 + 1) < 1/(8x9) = 1/8 - 1/9
..........................................
Cộng tất cả lại :
1/3 + 1/7 + 1/13 + 1/21 +...+ 1/73 + ... < (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ....+ (1/8 - 1/9) + ...< 1
Đặt \(A=\frac{1}{3}+\frac{1}{7}+\frac{1}{13}+.....+\frac{1}{91}\)
Ta có: \(A< \frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{90}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{9.10}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< 1-\frac{1}{10}\)
\(\Rightarrow A< \frac{9}{10}\)
Vì \(A< \frac{9}{10}< 1\Rightarrow A< 1\RightarrowĐPCM\)
Bài làm
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 1: CMR:1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Giải
Ta đặt M=1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91
Vậy M<1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90
M< 1/2+1/2x3+1/3x4+1/4x5+1/5x6+1/6x7+1/7x8+1/8x9+1/9x10
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5) +(1/5-1/6) +(1/6-1/7) +(1/7-1/8) +(1/8-1/9) +(1/9-1/10)
M< 1-1/10 < 9/10 (1)
Vì 9/10 < 1 (2)
Từ(1) và (2) ta có : 1/3+1/7+1/13+1/21+1/31+1/43+1/57+1/73+1/91<1
Bài 2:So sánh với 1: 1/4+1/9+1/16 + 1/25 +...+1/10000
Giải
Ta đặt M =1/4+1/9+1/16 + 1/25 +...+1/10000
Hay M = 1/2X2+ 1/3X3+1/4X4+1/5X5 +...+1/100X100
M< 1/1x2+ 1/2x3+1/3x4+1/4x5+...+1/99x100
M< (1-1/2) +(1/2-1/3) +(1/3-1/4) +(1/4-1/5)+...+(1/99-1/100)
M< 1-1/100 < 99/100 (1)
Vì 99/100 < 1 (2)
Từ(1) và (2) ta có : 1/4+1/9+1/16 + 1/25 +...+1/10000 <1
Giải:
Vì
Nên ta phải chứng minh:
=> ( điều phải chứng minh)
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
\(B=\frac{1}{21}+\frac{1}{31}+\frac{1}{43}+...+\frac{1}{211}< \frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{210}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{14.15}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{14}-\frac{1}{15}\)
\(=\frac{1}{4}-\frac{1}{15}\)
\(=\frac{15}{60}-\frac{4}{60}\)
\(=\frac{11}{60}< \frac{60}{60}=1\)
Vậy \(B< 1\)