Cho A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{20^2}\). Chứng tỏ rằng A<1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< 1-\frac{1}{8}< 1\)
Đặt S=1/4+1/16+1/36+...+1/10000
S= 1/4x(1+1/4+1/9+...+1/2500)
S= 1/4x(1+1/2x2+1/3x3+...+1/50x50)
S< 1/4x(1+1/1x2+1/2x3+...1/49x50)
S< 1/4x(1+1-1/2+1/2-1/3+....+1/49-1/50)
S< 1/4x(1+1-1/50)
S< 1/4x(2-1/50)<2/4(2/4=1/2)
S< 1/2
Ta có: \(\frac{1}{4}< \frac{1}{2}\)
\(\frac{1}{16}< \frac{1}{2}\)
... . . .
\(\frac{1}{10000}< \frac{1}{2}\)
\(\frac{1}{10000}+\frac{1}{10000}+...+\frac{1}{10000}< \frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{10000}< \frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)(*) (n phân số \(\frac{1}{10000}\) ; n phân số \(\frac{1}{2}\))
Từ đó suy ra \(\frac{1}{4}+\frac{1}{6}+\frac{1}{36}+\frac{1}{64}+...+\frac{1}{1000}< \frac{1}{2}\left(đpcm\right)\)
cm \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}< \frac{1}{2}\)
\(\Leftrightarrow\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\right)< \frac{1}{2}\)
\(\Leftrightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}< 2\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}< 1\)
ta cần chứng minh điều trên:
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}=1-\frac{1}{5}\)
\(\Leftrightarrow A< 1-\frac{1}{5}< 1\)
suy ra đpcm
Đặt biểu thức là A
Ta có:A=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}\)
\(\Rightarrow\)A=\(\frac{1}{4}+\left(\frac{1}{16}+\frac{1}{36}\right)+\left(\frac{1}{64}+\frac{1}{100}\right)\)
\(\Rightarrow\)A<\(\frac{1}{2}\)
\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3.\left(2-1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5\left(3-2\right)}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011\left(2006-2005\right)}\)
\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011}\)
Nhận xét: (a-b)2 \(\ge\) 0 => a2 + b2 \(\ge\) 2ab
Áp dụng ta có: \(3=\left(\sqrt{2}\right)^2+\left(\sqrt{1}\right)^2\ge2.\sqrt{2}.\sqrt{1}\)
\(5=\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\ge2.\sqrt{3}.\sqrt{2}\)
...
\(4011=\left(\sqrt{2006}\right)^2+\left(\sqrt{2005}\right)^2\ge2.\sqrt{2006}.\sqrt{2005}\)
=> \(VT
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{19\cdot20}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{20}\)
\(\Rightarrow A< 1-\frac{1}{20}< 1\)